开放系统中的量子纠缠及量子算符的(?)编序问题研究

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:xiaoyaozhu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
量子纠缠是量子物理区别于经典物理的重要特征,它体现了量子世界的非局域性。随着量子信息处理技术和量子通信技术的逐步发展和完善,纠缠作为一种核心资源已经越来越引起人们的重视。许多利用经典手段无法完成的任务,如量子隐形传态、量子密集编码、量子纠错和量子计算等,借助于量子纠缠都能够实现。但在执行真实量子任务的过程中,任何储存纠缠的实际物理载体都不可避免地与周边的环境相互作用,这将导致局域退相干并最终摧毁整个体系的纠缠,甚至导致纠缠突然死亡(ESD)发生,这将极大地限制了纠缠的实际应用。因此研究纠缠在开放环境中的动力学行为,可以更好地开发、操控、保护和利用纠缠,在量子信息处理和量子通信过程中具有重要理论和现实意义。在量子物理中,通常用量子算符表示可观测的物理量,而且这些算符之间大多是不对易的,如坐标和动量算符满足对易关系??[Q,P]?i(??1)。因此在经典物理量函数量子化的过程中不可避免的涉及到算符编序问题。各种算符的排序方案如正规序、反正规序和Weyl编序等,已经为解决很多具体的物理问题带来方便。因此,有必要对算符编序问题进行深入研究,这即有助于解决实际的问题,又能帮助人们更深层次的理解量子世界的内在规律。本文主要对开放系统中的量子纠缠动力学及量子算符的Q-P编序问题进行研究,主要内容包括1.考虑六个二能级原子分别处于三个独立热库中时三体纠缠的动力学演化,分析了初始纠缠态、环境的非马尔科夫性及原子与热库的相对耦合强度对三体纠缠及纠缠转移的影响。2.研究了三个处于纠缠态的二能级原子在经历一个共同热库或三个独立热库时纠缠的动力学行为。通过在经历环境前后分别施加弱测量和量子反转弱测量,部分克服了环境退相干的影响,改善了三原子纠缠,并分析了弱测量强度、初始纠缠态及环境性质对三体纠缠的影响。3.在考虑两个格点之间存在DM(Dzaloshinskii-Moriya)相互作用的情况下,研究了非均匀磁场中两比特Ising模型中的热纠缠,分析了外磁场、DM相互作用强度及环境温度对热纠缠的影响,讨论了热纠缠与量子相变的微妙关系。4.推导了Wigner算符Q编序和P编序的微分形式,利用微分形式研究了Wey对应及其逆变换,使得通过微分运算即可实现经典函数与量子算符之间的相互转换,并给出了转化任意算符函数为Q-P编序的方法。进一步推导了广义Wigner算符的微分形式,它可以整合Weyl编序、Q编序和P编序三种量子化方案。
其他文献
图像修复、压缩感知与机器学习等科学计算领域中的一些问题常化成带线性等式约束的可分裂凸规划问题,同时在通信系统、控制系统、电力系统、信号处理等工程应用中的一些问题也可以化成广义周期Sylvester矩阵方程。本文主要讨论求解这两类问题的迭代算法,同时分析算法的收敛性质,并通过数值仿真验证所设计算法的有效性。全文共分八章。第一章简要介绍两类问题的研究背景、研究现状及本文的研究内容。通过回顾带线性等式约
量子纠缠是量子信息与量子计算最为核心的资源,利用这种资源可以完成经典信息系统无法完成的任务,如量子隐形传态、量子密集编码、基于纠缠态的量子密码术等。在对处于纠缠态的量子系统进行操作的过程中,要最大程度地保持初始纠缠量,这是利用量子纠缠实现量子信息和量子计算的前提条件之一。然而,真实的量子系统不可能完全脱离环境,量子系统不可避免地与周围的环境相耦合而导致量子退相干,这是实现量子信息处理的主要障碍,所
非线性泛函分析是当今数学领域中一个具有广泛应用价值的重要研究方向:该方向的创立旨在将现实领域中出现的各种现象抽象成非线性数学问题,进而创立了一系列处理非线性问题的理论和方法.非线性泛函分析的主要内容和方法包括解析方法、半序方法、拓扑度理论、临界点理论和单调映射理论等.这些重要方法和理论可广泛的应用于非线性积分方程、常微分方程、偏微分方程和其他各种类型方程及其边值问题的研究.分数阶微分方程边值问题是
近些年来,量子信息学的发展极大推动了光场非高斯态的理论和实验研究,这是由于它的重要性远远超过了传统的高斯态。尤其是非高斯纠缠态,它能够弥补传统高斯纠缠态在量子信息处理中的不足,实现决定量子通讯成败的最佳纠缠蒸馏,从而有效提高传统高斯态的纠缠度和改善一些实际的量子信息处理过程。而且,作为一种新的量子信息资源,不仅能为长距离量子信息处理提供新的物理载体,还可推动光场量子态调控工程的发展。鉴于非高斯量子
寒冷适应问题一直是生物学家研究的热点问题,近年来伴随着组学的快速发展,寒冷适应背后的遗传机制研究更是成为进化生物学领域的研究热点。紫貂(Martes zibellina),属食肉目鼬科貂属,栖息地的丧失和人类的大量捕杀使紫貂种群数量急剧下降,目前紫貂已被我国列为国家一级保护动物。紫貂的主要栖息地为亚寒带针叶林地域,所处生境气候寒冷,年平均气温低于零度,最低气温低于-30℃。生活在寒冷地区的物种会采
适应是生物在形态结构和生理机能与所处的环境相适合,并进行生存和繁衍的过程。狐狸属于食肉目犬科狐属,现存12个物种,广泛分布于世界各地,且种群数量稳定。此外,赤狐和北极狐的毛色变种银狐和蓝狐由于较高的毛皮质量,在世界各地被广泛饲养。目前关于狐属适应性进化的分子机制的研究还较少,本研究借助比较转录组技术,对赤狐、沙狐和北极狐及毛色变种蓝狐和银狐3个物种进行分析。通过筛选它们之间的直系同源基因,进而进行
椭圆方程对自然科学的发展,特别是对物理学中流体力学、弹性力学、电磁学及其它科学领域的发展起着越来越大的促进作用,在数学领域也得到越来越高的重视.基于此,本文利用变分法和临界点理论研究了几类椭圆方程,得到一系列有关变号解、无穷多个高能量解存在性和唯一性的结果,推广并改进了现有文献的相关存在性结论.所得主要结果概括如下:在第1章,介绍了变分法的发展历史和研究现状以及其众多专家学者的应用成果.与此同时我
由于非线性函数、时滞、时变阶次等不确定因素及约束条件普遍存在于实际系统中,且不确定因素的存在及约束的破坏往往会造成系统性能退化和系统不稳定,因此不确定非线性系统及时滞系统的控制和约束控制的研究得到了广泛关注。本文研究了不确定非线性系统的若干控制问题。主要研究内容包括:1.对一类具有未知输出函数和输入匹配不确定项的非线性时滞系统,其系统的非线性函数包含未知的常数、输入和输出多项式增长率。通过构造一个
复杂多变的不确定决策环境和决策者有限的认知水平为多属性决策方法的研究带来了更多的机遇和挑战。本文基于OWA算子、犹豫模糊信息、概率犹豫模糊信息和概率区间犹豫模糊信息的决策方法进行了深入系统地研究,主要工作如下:(1)研究了基于椭圆分布的OWA算子的决策方法。利用量化函数定义了对偶OWA算子和对偶加权OWA算子,具体研究了两类算子的基本性质。基于概率统计中广泛存在的椭圆分布,提出几种有效实用的OWA
登山是极具社会影响、经济价值与象征意义的一项体育运动。在中国,登山起源于远古先民“山岳有灵”观念下的为祭祀而登的祭山传统,此后又发展出为获得审美体验而登、为修行而登、为休闲娱乐而登的各种登山形态。近代面对新的变局,中国登山积极吸收西方现代登山运动发展成果,融入时代潮流,衍生出了为救国而登、为育人而登、为文明而登的新形式。新中国成立后,在建国初期、改革开放时期和后奥运时代,登山又以为“站起来”而登、