稀土掺杂聚合物-SOI光波导放大器的研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:chae888888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,硅基光子学的研究得到了飞速发展,多用途的无源和有源硅基纳米光子器件在多个领域展现出巨大应用前景,受到国际学术界和产业界的极大关注。其独特优势在于,可利用现有的微电子互补金属氧化物半导体(CMOS)工艺来实现大规模、低成本、低功耗的光电集成。基于与CMOS兼容的工艺,可以制作出高折射率差、低损耗的紧凑型硅波导和氮化硅波导。同时,基于绝缘体上硅(SOI)波导和氮化硅(Si3N4)波导体系,已研制出硅基调制器、滤波器、波分复用器以及探测器等各种功能器件。但挑战仍然存在,大规模的片上集成器件存在一定的损耗,限制器件性能同时增加了传输信号的误码率,因此片上光波导放大器的需求日益迫切。然而硅是间接带隙半导体,硅本身不能单独完成高效集成光学互连的使命,因此,与其他有源材料集成是非常必要的。铒掺杂的聚合物材料具备制备工艺简单,种类多样、折射率差易于调整,易于实现高密度大规模集成等优势,是与绝缘体上硅(SOI)波导和氮化硅(Si3N4)波导集成制备光波导放大器的良好选择。目前报道的聚合物材料的光波导放大器的增益结果都不甚理想,这主要是由于:无机稀土离子与有机聚合物的物理掺杂方式限制了稀土离子的掺杂浓度,波导内光场密度低,因此新型的掺杂方式和波导结构亟待被开发。针对这一问题,本论文对高增益、低阈值泵浦功率、结构紧凑的SOI-铒掺杂聚合物混合集成光波导放大器进行了系统研究。主要开展的工作及创新点如下:1、粒径均一、小尺寸的纳米颗粒可以均匀分散于聚合物中,从而降低了光的散射损耗,但是小尺寸纳米粒子的比表面积比较大,大量的表面缺陷和表面活性剂分子很容易导致荧光中心无辐射跃迁而使荧光猝灭。针对这一问题,本文采用在纳米粒子表面包覆活性壳层(壳层中含有敏化剂Yb3+)的方法提高铒镱共掺纳米粒子在1.53μm发光强度。探索异质壳核诱导方法,合成了核-壳结构的α-NaYF4/β-NaLuF4:Yb3+,Er3+纳米粒子,通过透射电子显微镜观察,纳米粒子形貌良好,分散均匀,包覆壳层前后,纳米粒子的粒径分别为13 nm和21nm。这是本文在材料方面的一个创新点。2、在对纳米粒子进行光学改性研究的基础上,为了进一步提高增益,本文采用在纳米粒子表面修饰不饱和基团与有机聚合物前驱体共聚的方法制备一种新型高掺杂稀土纳米粒子的有机聚合物:NaYF4/NaLu F4:Yb,Er NCs-PMMA键合型复合材料。与传统物理掺杂相比,Er3+的掺杂浓度提高了一个数量级,同时,也改善了材料的稳定性。分别对α-NaYF4/β-Na Lu F4:Er3+,Yb3+NCs-PMMA材和α-NaLu F4NCs-PMMA两种材料的红外发射光谱分别进行了测试,纳米粒子包覆壳层后的荧光发射强度较α-NaLuF4提升了近6倍,荧光光谱的半高宽也得到了展宽,为62 nm。将这种新型聚合物材料作为增益介质用于高增益聚合物光波导放大器的制备是本文在材料方面的重要创新点。3、采用NaYF4/NaLu F4:Yb,Er NCs-PMMA键合型复合材料作为波导的芯层制备倒脊型光波导放大器。基于有限差分法对波导放大器的单模条件及光功率占比进行计算。建立了980 nm泵浦的铒镱共掺七能级系统模型,通过分析将其简化,获得原子速率方程和光功率传输方程。通过对有源芯层材料吸收光谱及发射光谱的测试,结合Judd-Ofelt理论,对增益特性模拟所需参数进行了计算。结合Matlab软件编程,对波导放大器的增益特性进行了精确分析。优化了波导的长度、信号光及泵浦光的输入功率等关键参数。我们采用传统的半导体工艺制备了器件并对其增益性能进行了测试。在1.3 cm长的器件上,当信号光功率为0.1 mW,泵浦光功率为400mW时,获得了29.2 dB的相对增益,此时器件的传输损耗为5.3±0.3 dB/cm,光纤与波导端面耦合损耗为3.6 dB。经计算,该器件的净增益为15.1 dB,为目前报道的在聚合物波导放大器上获得的最大增益值。4、提出将增益聚合物填充到狭缝波导中制备新结构的光波导放大器。狭缝波导可以将电场集中限制在纳米尺度的低折射率狭缝中,狭缝区域内的光场密度很高,比常规微米尺度矩形介质波导的光场密度高近20倍,这将提高信号光、泵浦光与增益介质的相互作用。该结构对于提高放大器的增益性能和降低泵浦光的阈值功率具有重要价值,是本文在器件结构设计方面的一个创新点。基于电磁场本征方程及其有限差分形式,通过全矢量有限差分方法对SOI狭缝波导的模式进行了分析。合成了NaYF4:10%Er3+NCs-PMMA材料,将其填充至SOI狭缝波导中作为增益材料,结合波导的重叠积分因子及有效截面积对波导的尺寸进行了优化,硅波导高度为250 nm,宽度为222 nm,狭缝宽度为100 nm。建立了1480 nm泵浦的Er3+四能级跃迁模型,对基于SOI狭缝结构的光波导放大器增益性能进行了分析;对芯层材料的折射率、荧光光谱和吸收光谱进行了表征,结合J-O理论对模拟所需的参数进行了计算;结合增益特性对波导关键参数进行了优化,当信号光功率为0.001 mW,泵浦功率为20 mW时,在1.5 cm长的波导上可获得5.78 dB的净增益。为了降低传输损耗,引入低损耗的Si3N4狭缝波导,通过相同的理论分析方法对Si3N4狭缝波导进行尺寸优化,优化的Si3N4高度为400 nm,宽度为400 nm,狭缝宽度为200 nm。理论计算表明,当波导传输损耗为3dB/cm时,在6cm长度器件可获得8.2d B净增益。上述研究为波导放大器提供了新的思路及方向。
其他文献
将拥有不同利益诉求的主体纳入到公共决策框架,合作解决公共领域困境是地方各国政府长期的努力方向。过去,以服务外包为核心的契约型合作时常因为责任分担不明、利益勾连等问
对华南的荔枝霜疫霉(Peronophythora litchii Chen ex Ko et al)的形态和营养特性进行了研究,并和新模式种进行了比较。发现此菌孢囊梗的生长是一种有限-无限生长类型,或称之为
与传统的锂离子电池相比,锂硫电池具有高比容量的优点,因而人们希望它能作为未来的动力电池和储能电池。但是,由于锂硫电池存在的硫电导率低和在充放电过程中正极材料体积发
[目的]了解基层卫生院政府设备配置情况,探讨影响设备使用率的相关因素并提出应对策略。[方法]应用定量问卷调查和重点访谈相结合的方式,在重庆全市范围内,对基层检验科专业
本文首先对平衡记分卡的产生背景、基本内容、优缺点进行了简单介绍,接着主要介绍了其在我国的适用条件。通过分析平衡记分卡在我国的应用现状,提出了其在我国应用时需注意的
随着各行业的迅速发展,IT行业也进入了新的时代,在这个新时代中,各类软硬件技术陆续出现,物理服务器的数量也在迅速增加,继而出现了服务器性能优化与安全问题。在服务器领域
文头是公文三大板块(文头、正文、文尾)之一,它主要由版头、发文字号、间隔横线等部分组成。文头的正确撰制对体现机关公文的法定权威、实现公文的科学化管理有着重要的作用
本文提出了一个配电网络重构的改进最优流模式法(IOFP)。并用一个快速有效的单环网潮流算法求解最优流模式。本文考虑了网络重构的实际运行约束,如最大刀闸操作次数,支路过载等。经测
引言连年来,苏锡常地区由于地下水的过量开采,已造成了地下水位的急剧下降,引起了地面不均匀沉降.为了防止和减轻该地区地面沉降等地质灾害,保障和促进经济社会可持续发展,省
臭氧生产用水(或白水)中溶解物及细小分散物质的积累,会降低纸厂产品质量,影响造纸操作效率,这些问题越来越突出。目前主要的生产用水净化措施有:膜过滤、絮凝化学品的使用、厌