求解Korteweg-de Vries方程的两种有限元计算

来源 :兰州大学 | 被引量 : 0次 | 上传用户:chrisl0708
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多年来,有限元法在很多领域体现了它的可行性和优越性.尤其在数学中,在偏微分方程的数值求解中广泛应用并以其独有的特点占据优势.本文分别采用时空耦合有限元方法和时空分离有限元方法计算Korteweg-de Vries方程的数值解.首先本文将Korteweg-de Vries方程的时间域和空间域张成的二维区域作为求解区域,对其进行三角剖分,在此基础上完成有限元求解过程.其次,根据初值问题的特点,离散时间域,从t0时刻开始,依次在每个离散时间区域上采用有限元方法进行求解,得到相应的ODE,然后对ODE实行空间域上的有限元数值计算,从而完成整个数值计算.以上两种方法在处理非线性项时,都采用了 Picard迭代法.本文对两种计算结果进行分析比较,通过数值实验验证在KdV方程上运用这两种有限元法的有效性.
其他文献
倒装句是历年高考英语特殊句式中的一个考查热点,由于学生平时积累的倒装句知识较散,知识点极易混淆、遗忘,以致其成为应试时失分率较高的题型。高考对于倒装句的考查主要分布在单项填空题中(江苏卷、北京卷、天津卷等自主命题卷),倒装句也可能出现在全国卷的语法填空和短文改错题中。虽然在近两年的高考试题中这个考点单独出现的概率不高,但它却容易成为阅读的理解困难句,也是书面表达的亮点句型,因此熟练掌握倒装句
期刊
我国图书馆事业和社会教育事业在民国时期发生了重要的变革。在这一时期,时代更迭,内忧外患,旧的文明和新的文明不断碰撞,旧式封建藏书楼体系受到冲击,新式图书馆纷纷涌现。同时,这一时期社会教育思潮不断发展,出于培养人才、革新思想、拯救社会的需要,各种类型的图书馆纷纷建立起来,并且成为社会教育机构之一。乡村图书馆也在全国图书馆建立的浪潮和社会教育思潮中建立并不断革新发展,成为乡村地区教育民众的重要社会机构
在含能材料领域,二硝酰胺铵(ADN)作为推进剂的理想氧化剂具有能量密度高、毒性低且不含卤族元素的特点,可以提高推进剂理想比冲,满足环境友好、低特征信号的要求。但其较高的吸湿率严重影响着推进剂的工艺及力学性能。研究发现,ADN可以与18-冠醚-6(18-Crown-6)或吡嗪-1,4-二氧化物(PDO)形成共晶,不仅吸湿率明显降低且可以实现氧平衡为0的理想状态,所以氧化剂共晶有望取代单质应用于固体推
图书情报专业硕士作为图书情报领域高级应用型人才,对于图书情报事业的发展有重要影响。近几年我国高校对于专业型硕士招生实行扩招政策,图书情报专业硕士培养单位的数量也在逐年增加,在未来会有更多的图书情报硕士走向社会,赢得自己在社会的一席之地。所以,对于图书情报专业硕士的考量就显得尤为重要。本文从图书情报专业硕士和职业胜任力两个领域出发,对相关文献进行研究,发现现存文献很少涉及图书情报专业硕士职业胜任力的
情境呈现假定你是李华,你的英国朋友Lily最近因肥胖问题而感到烦恼,发来邮件向你咨询如何才能控制体重并保持健康。请你给她回一封邮件,提出相关建议。注意:1.词数80左右;2.可以适当增加细节,以使行文连贯。
期刊
波长为2-20 μm的红外激光在军事和民用领域有着广泛的应用,如在红外制导、红外激光雷达、红外激光通信、医疗领域和环境监测等方面都有重大应用前景。其中非线性频率转换技术能有效将离子直接发射的激光进行频率转换,使激光波段放大,同时可以实现小型化、全固化的激光器件,但是对非线性光学晶体的要求比较高,需要晶体具有较强的非线性光学响应、比较宽的带隙以及较好的热导率和合适的双折射率。硫族非线性光学晶体由于具
花色是植物重要的观赏性状之一,蓝色花更是深受人们喜爱,由于蓝色花植物种类较少,致使蓝色花育种备受关注。燕子花(Iris laevigata)是鸢尾属一种抗寒性较强的水生蓝色花种类,花色艳丽,观赏价值高,其花色呈色机理相关研究鲜有报道,开展蓝色花色调控相关基因研究,对蓝色花色育种有着重要指导意义。本研究以燕子花为研究对象,通过对花被片主要代谢物成分分析,解析燕子花蓝色花形成的物质基础。结合燕子花转录
无约束最优化问题在现实生活中有着极为广泛的应用,非线性共轭梯度算法是用来求解无约束最优化问题的一类十分重要的方法,其显著优点是所需存储量小且有较好的收敛性质,因而十分适合用于求解大规模优化问题.在具体使用中主要有Hesfenes-Stiefel(HS)法、Fletcher-Reeves(FR)法、Polak-Ribiere-Polyak(PRP)法以及Liu-Storey(LS)法等,本文主要讨论
张量互补问题在多人非合作游戏,超图聚类问题以及交通平衡问题等领域有着重要的应用.本文给出了一个新的光滑函数,并利用该光滑函数将张量互补问题等价地转化为非线性方程系统,同时提出了求解张量互补问题的连续正则化(CR)方法,在该方法的每次迭代中,只需要求解一个线性方程系统并执行一次线搜索.首先,我们证明了求解含有强P0张量的张量互补问题的光滑轨道的存在性和连续性.其次,我们研究了当张量互补问题中的张量为
本文针对[Y.Chen,X.D.Wang,W.H.Deng,J.Phys.A:Math.Theor.,51(2018)495001]推导出的Fokker-Planck方程,并针对该方程给出了一种有限差分的离散格式.主要是通过得到方程的等价形式后,对Caputo导数通过L1格式进行离散,Riemann-Liouville导数通过G-L格式进行离散.利用Fourier分析的方法进行稳定性和收敛性的证明