论文部分内容阅读
体型全固态锂电池不仅具有安全性能高,电压窗口宽,能在极端环境(高温、高压等)下使用等优点,同时由于搭载高载量的电极活性材料,有利于实现高能量密度的全固态锂电池,使其拥有广阔的应用前景。近年来,随着对固体电解质的研究不断深入,固体电解质的离子电导率稳步提升,而全固态锂电池中界面问题尤其是高载量电极材料内部颗粒间的界面接触问题,成为影响体型全固态锂电池性能的关键因素。目前对于全固态锂电池电极层与电解质层之间界面问题研究较多,并取得了较好的成果,但是对于高载量电极材料内部颗粒间的界面改善及机理的研究则较少。针对上述问题,本文采用低成本、可大规模生产的工艺——冷压烧结法,首次系统地制备高载量含铝复合电极(载量最高可达175 mg·cm-2)。通过高温热处理过程中融化的铝在颗粒间孔隙的浸润填充,改善电极材料内部颗粒间的接触,提升体型全固态锂电池的电化学性能。主要研究内容如下。首先,采用溶液浇铸法制备(PEO)12-LiClO4固态聚合物电解质膜。PEO聚合物电解质膜成膜性好,制备方法简单,具有一定柔性,能与电极表面紧密接触。(PEO)12-LiClO4在 30 和 60℃下的离子电导率分别为 3.97·10-7 S·cm-2和1.03·10-4 S·cm-2。同时利用无机固体电解质LLZO对PEO基聚合物电解质进行掺杂改性,实验结果表明,LLZO的加入提高了聚合物电解质膜的电压窗口和离子电导率,可在较高电压复合正极的全固态锂电池中使用。当复合10 wt%的LLZO时,PEO-10LLZO聚合物电解质膜的综合性能最佳,在30和60℃的离子电导率分别为 4.91·10-7 S·cm-2 和 1.66·10-4 S·cm-2。其次,本文以Li4Ti5O12(LTO)作为负极活性材料,制备高载量LTO-Al负极片,研究热处理温度、Al含量、热处理时间和极片载量等参数对高载量LTO-Al负极的致密度、硬度与导电性的影响。实验表明,在载量为0.1g、铝含量为20 wt%、热处理温度为660℃、热处理时间为2h条件下得到的高载量LTO-Al负极综合性能最佳(样品标记为LTO2A1660-2h)。在60℃,0.01C恒流充放电,LTO2A1660-2h的首次放电比容量为8.5 mAh·g-1,对应的放电面积容量为0.5 mAh·cm-2,充放电30个循环后,放电比容量增加到14.9 mAh·g-1,放电面积容量为0.73 mAh·cm-2(60℃,0.01C)。而同样条件下所得的高载量纯LTO负极则基本没有比容量。以上结果表明,Al金属改善了电极材料内部颗粒界面接触,并且作为电子导体提高了全固态锂电池的电子导电性,从而增强了 LTO基体型全固态锂电池电化学性能。最后,以 LiFePO4(LFP)、LiNi0.5Co0.2Mn0.3O2(NCM523)作为正极活性材料分别制备了高载量LFP-Al和NCM-Al复合正极片。研究Al对高载量正极材料的机械性能及导电性的影响,并研究其对LFP和NCM基全固态锂电池电化学性能的增强作用。研究表明,热处理过程中,融化Al能很好地填充正极材料颗粒间孔隙,且为电子提供了三维快速传输通道,提高了正极的电导率;此外,金属Al的加入提升了极片内部颗粒间的结合,提高了极片的致密度及机械性能。全固态锂电池电化学性能测试表明,LFP和LFP2Al的首次放电比容量分别为2.5 mAh·g-1和12.7 mAh·g-1,对应的首次放电面积容量分别为0.17 mAh·cm-2与0.62 mAh·cm-2,金属Al的加入有效提升了体型全固态锂电池的电化学性能。在热处理过程中,由于NCM2Al复合正极片变形,导致极片表面不平整,无法装配电池进行电化学性能测试,还需进行进一步研究。