论文部分内容阅读
多铁性材料同时具有多种铁性,如铁电性、铁磁性和铁弹性等,并且能够表现出它们之间的耦合作用。这一特点允许磁电多铁性材料的电极化可以被磁场调控或者磁极化被电场调控,从而在存储器、传感器和自旋器件等领域有着非常诱人的应用前景。但是单相多铁性材料非常稀少,其中钙钛矿结构氧化物BiFe03由于其室温下拥有铁电性和反铁磁性,因而受到了广泛关注。BiFe03的铁电性来源于Bi3+的6s2孤对电子引起的离子偏移,反铁磁性来源于它周期为62-64nm的自旋螺旋结构,这样的结构导致其磁性非常弱,从而限制了其磁电耦合效应;再加上在制备过程中由于Bi元素的挥发和Fe3+的变价会导致BiFe03出现氧空位而产生严重的漏电电流问题,使其难以得到实际应用。针对上述问题,本论文采用两种技术路线来改善BiFeO3的铁磁性,减小其漏电电流。首先是通过空间几何限制的方法(如制备纳米晶)抑制BiFeO3的自旋螺旋结构,从而增强其铁磁性;然后利用元素掺杂方法,引入化学压力,抑制BiFe03的自旋螺旋结构,增强其铁磁性,并且通过稳定晶体结构,减小氧空位的出现,进而降低其漏电电流;最后利用高温高压固相反应法合成了基于BiFeO3半数Cr掺杂的双钙钛矿结构Bi2FeCrO6陶瓷样品,对其晶体结构、磁性能及介电性能进行论文研究。本论文主要结论如下:1.使用溶胶-凝胶法制备了尺寸较小的纯相BiFeO3纳米晶颗粒,颗粒尺寸分布在30-200nm之间。由于小颗粒(尺寸小于62 nm)的存在,样品表现出了一定的铁磁性,并且其铁磁性和反铁磁性磁矩的共存也导致了样品存在交换偏置效应。FC/ZFC曲线也揭示了样品的铁磁性;由于样品尺寸较小的原因呈现出了超顺磁现象。2.重点研究了 La、Pr和Ba元素对Bi位掺杂以及Ba/Cr的共掺杂对BiFeO3纳米晶的物性及微结构影响。结果表明,无论是La、Pr还是Ba元素的引入,都会导致BiFeO3的晶体结构发生一定程度的畸变,从而抑制其自旋螺旋调制结构,进而增强了BiFeO3的铁磁性。特别是当Ba元素的掺杂量为20mol%时,样品具有最强的剩余磁化强度(Mr=0.51emu/g),与未掺杂纳米晶相比,提高了 2个数量级;并且Ba元素的引入,能起到稳定BiFeO3结构减少氧空位产生的作用,从而降低了其漏电电流。在Ba掺杂的基础上,我们又引入了 Cr元素进行共掺杂,其结果表明,随着Cr元素的引入,样品又开始有出现杂相的趋势,并且降低了Ba掺杂BiFeO3的磁性能。3.在元素掺杂的基础上,利用高压高温固相反应法制备了基于BiFeO3半数Cr掺杂的双钙钛矿结构Bi2FeCrO6陶瓷样品。样品XRD数据以及Rietveld精修分析表明,所制备的Bi2FeCrO6样品拥有R3c空间群的菱方晶系结构,其晶胞参数为a=5.556OA和c=13.7329A。SEM图像表明晶粒呈多面体结构,具有良好的致密性,晶粒平均尺寸为为2.80μm。芯能级的XPS谱图也表明了样品中Fe(Fe2+和Fe3+)和Cr(Cr3+和Cr6+)元素存在两种价态。而O 1s的XPS谱图则表明O元素在样品中有着两种不同的化学环境,分别是晶格氧(有FeO6和CrO6八面体两种)和吸附氧。磁性测量表明了 Bi2FeCrO6陶瓷样品中尽管有着很强的反铁磁背景,但仍表现出来了铁磁性行为。由于铁磁和反铁磁行为的共同作用,其磁滞回线呈现出交换偏置效应。Bi2FeCrO6陶瓷样品拥有较大的介电常数和较小的介电损耗;这为Bi2FeCrO6陶瓷样品在介电方面的应用提供了实验基础。