初中数学教材中的数学文化及其教学研究——以北师大版教材为例

来源 :伊犁师范大学 | 被引量 : 0次 | 上传用户:c2t2dy20
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数学文化作为人类文化的重要组成部分,是数学研究领域的热点话题。数学文化的研究对于挖掘数学文化的内涵、延续数学文化的教育价值和弘扬中华优秀传统文化具有重要意义。在教学中适当融入数学文化,不仅可以帮助学生了解数学史和理解数学知识,还能培养学生的数学素养以及核心价值观等。对数学文化融入教材和教学的研究,是提高数学教学质量和提升学生数学素养的必然要求。在新时代教育教学背景下,我国数学文化教育教学研究现状如何?在数学教材中是如何体现的?在教学中的渗透现状如何?如何更好渗透?这些都是值得深思和研究的问题。本文聚焦初中教材和教学,以北京师范大学出版社2013年出版的六本初中数学教科书为研究对象,从教材整体和具体内容上分析初中教材中数学文化数量、类型和融入方式等特征,把握数学文化融入教材的方向。基于教材分析,对一线教学中使用北师大版数学教材的初中教师和学生进行问卷调查和访谈,了解数学文化融入教学的现状。通过调查可以发现,学生对数学文化的兴趣程度偏低且学习动力不足,获得数学文化知识的途径相对狭隘,且对数学文化知识的掌握并不理想。教师大多认为自身的数学文化知识储备不足且数学文化修养有待提高,获取数学文化知识的条件和途径比较单调,他们认为对数学文化的重视程度低、提升动力不足、学生来源质量、升学限制和缺乏指导性范式等都是影响数学文化教学质量的重要因素。最后,针对实际现状及困境,本文从学生学习、教师教学、学校及教育管理部门和教材编写四个方面提出数学文化教学建议:(1)提高学生数学文化认同感、培养学生数学文化学习兴趣、给学生提供丰富的数学文化学习资源;(2)提升教师的数学文化素养、准确把握数学课程标准要求、利用数学文化培养学生数学核心素养、创新数学文化融入教学的途径方法;(3)完善数学文化评价机制、开展教师数学文化培训活动、为教师数学文化教学提供范本;(4)加深数学文化与数学知识的融合度、依据学生兴趣融入数学文化。
其他文献
本文主要研究三类非线性椭圆型方程解的存在性问题.全文共分成五章,主要内容如下:第一章为绪论,主要对非线性椭圆型方程的研究背景进行简单的阐述,并通过文献举例说明非线性椭圆型方程的研究现状,最后给出本文求解所需要的基本定义及定理.第二章应用变分法,结合对称山路定理,(C)c条件证明一类p-Kirchhoff型椭圆方程M(∫RN(|▽u|p+V(x)|u|p)dx)(-Δpu+V(x)|u|p-2u)=
学位
20世纪80年代以来,许多国家陆续开展课程改革,其主要内容大都为制定统一的课程标准或教学指南,在此背景下有关教学、评价、教材与课程标准等教学要素之间的一致性越来越受到理论和实践研究者的关注,成为课程改革的热点话题。但是,目前我国关于课程标准一致性的研究多集中在中高考试题、教材习题与课程标准是否具有一致性,这是一种以结果为导向的评价,指向学生最终的学习结果,而对于教学过程中教师的教是否达到课程标准的
学位
有限群之间的同态数量是有限群理论中一个重要的数量信息,借助这个数量信息可以进一步探究有限群的结构.本文以两类互相不同构的Sylow p-子群为循环群的10pn 阶非交换群H=<a,b|a10=1=bpn,a-1ba=br,r(?)1(modpn),r5≡1(modpn),p≡1(mod5)>(其中p>5 为素数)和非交换群M=<a,b,c|a5=b2=cpn=1=[a,c]=[b,c],b-1ab
学位
思维导图策略作为一种可视化策略,已逐渐进入一线教师的视野。思维导图策略能够为构建学生中心课堂的教学组织提供一定理论指导,并可以丰富ICAP框架理论与效能感等理论。同时,初中生在数学复习中运用思维导图策略可以发挥学习者主体地位,提高学习者学习投入。因此,初中生在数学复习中运用思维导图策略具有重要的理论意义与实践意义。本研究主要采用实验法,探讨思维导图策略对初中生数学学业表现的影响,并分析其内在机制,
学位
对有限群同态个数的讨论与刻画是群论研究的重要问题,由此可以间接的对有限群进行分类.本文从已知群的结构和生成关系出发,在同构意义下,利用Sylow p-子群为循环群的2qpn(q<p奇素数)阶群的分类.并结合群论和数论的知识,构造每一类群的生成元在同态映射下的像,计算这类2qpn阶群的自同态和自同构数量,以及它们之间的群同态数量,基于上述所得到的同态数量,验证这类2qpn群满足T.Asai&T.Yo
学位
自进入21世纪以来,我国基础教育发生了巨大变革,数学教材也由过去的“一纲一本”发展为现如今的“一标多本”。不同版本的教材在内容选择、切入视角以及呈现方式等各方面有各自的特点以及共同之处。数学源于生活,应用于生活,在这个快速发展的时代,培养学生问题解决能力成为数学教育的重要目标之一,而问题解决能力的发展与问题情境密不可分。数学教材作为教师传授知识的重要依据,其问题情境设置的合理性对于教学实践有重要指
学位
基础教育课程不仅强调基本知识和技能的掌握,还强调综合能力的发展,对学习内容中包含的一些数学思想的认识,以及在实际数学活动中的相关经验。数学是逻辑性很强的一门学科,在促进个人智力发展中发挥着不可替代的作用。小学低年段学生的思维处于具体形象思维为主向抽象思维为主过度的阶段,问题串是推动这一思维转变的一个重要工具。基于问题的学习可以满足学生的知识需求,提高他们综合运用知识的能力。问题串教学能够激发学生对
学位
本学位论文主要研究次线性算子及其多线性交换子在变指标Herz型空间的有界性问题.本文主要内容如下:第一章,概述了本学位论文关于变指标函数空间的研究背景、现状,然后阐述本文的主要结果,最后给出一些常用记号.第二章,根据次线性算子的尺寸条件、BMO空间的性质及关于变指标Herz-Morrey空间的相关定义,引理,建立了次线性算子的多线性交换子在变指标Herz-Morrey空间的有界性结论.第三章,利用
学位
课程标准的颁布为教材编写、课程教学、教学评估和考试命题提供指导方向。教材是课程改革的重要载体,在教育领域中占有重要的地位。在课程标准的指导下,出现了不同版本的教材,这就需要研究这些版本教材是否符合课程标准。习题在教材中有较大的篇幅,在我国教材习题与课程标准的一致性研究体系尚未成熟的背景下,数学教材习题与课程标准的一致性水平是一个待挖掘与发展的研究领域。本研究将喻平教授的数学核心素养框架与美国SEC
学位
本文研究了 Riesz模范畴的直积与直和的性质,内容安排如下:第一章介绍了 Riesz模的研究背景和与本文相关的基本概念和引理.第二章给出Riesz模范畴中两个对象的直积概念;定义了直积到Riesz模(Mi,+,≤)的投影;证明了M1+M2的元素分解式唯一的充要条件是(M1,+,≤)∩(M2,+,≤)=0,顺势给出Riesz模范畴中两个对象的内直和概念;证明了(M1,+,≤)∩(M2,+,≤)=0
学位