结构域重排甲基转移酶DRM7调控番茄叶片衰老表观遗传机制研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:kpdavid
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
动态DNA甲基化作为重要的表观遗传修饰,在叶片发育和衰老进程中发挥重要作用。DNA甲基化修饰的建立和维系主要受到DNA甲基转移酶的调控,然而关于DNA甲基转移酶在叶片发育和衰老过程中的功能和作用机制鲜有报道。番茄作为全世界重要的经济作物,阐明DNA甲基转移酶及其依赖的DNA甲基化修饰在番茄叶片发育和衰老中的表观遗传机制,将有助于丰富叶片衰老调控机制,并为推进表观遗传因子在延缓叶片衰老和番茄品质改良中的研究和应用提供支撑。本研究通过对番茄野生型和SlDRM7基因沉默株系开展全基因组甲基化测序(WGBS)和转录组测序(RNA-seq),探究了SlDRM7在番茄叶片衰老中的生物学功能和发挥作用的潜在生物学调控途径。主要研究结果如下:(1)番茄结构域重排甲基转移酶SlDRM7基因沉默株系(Sldrm7-RNAi)表现出多种生长发育缺陷,包括植株矮小、叶片小以及叶片脉间失绿。同时,我们发现脉间失绿表型在T1代发生分离,即脉间失绿和正常绿色叶片的幼苗数量比例约为2:1。出现脉间失绿表型幼苗在T2-T8代继续以2:1的比例保持分离(命名为drm7i),而正常绿色叶片的幼苗代在T2-T8代中表型不分离(命名为drm7ins)。通过生理指标和基因表达分析发现,SlDRM7沉默导致叶片叶绿素含量减少、光合能力降低、衰老相关基因的表达显著上调,表明SlDRM7极有可能是调控番茄叶片衰老的重要表观遗传修饰因子。自然衰老和黑暗诱导均可导致叶片中SlDRM7基因表达增加,暗示SlDRM7可能是作为一种负表观调控因子参与抑制叶片衰老进程。(2)全基因组甲基化分析表明,与drm7ins相比,drm7i在全基因组水平的甲基化变化不明显,但是差异甲基化分析共检测出16418个差异甲基化区域(DMRs),涉及上千个基因启动子或内含子区域差异甲基化,暗示SlDRM7沉默导致番茄叶片的表观形态发生改变,后者很可能在叶片衰老过程中发挥重要作用。通过WGBS和RNA-seq数据进行关联分析,得到289个差异甲基化和差异表达基因(meth-DEGs),后者直接或间接影响了参与光合作用、叶绿素生物合成、光系统和淀粉降解等过程,造成叶片叶绿素含量和光合能力降低,导致淀粉异常积累和叶绿体降解,从而引起叶片的失绿和衰老。综上所述,SlDRM7作为一个表观调控因子,通过调节与淀粉和叶绿素代谢相关基因的表达,从而影响番茄叶片的失绿和衰老。同时,叶片还可以通过激活SlDRM7的表达建立起一种自我反馈调节通路,在营养生长和衰老之间寻求平衡。
其他文献
移动机器人在工业生产领域以及社会生活领域都逐渐受到关注,具有广阔的应用和经济前景,其核心并且最基础的功能是定位和建图,这通常通过搭载的传感器收集相关环境信息实现。但是单一类型的传感器获取的环境信息有限,无法满足对定位精度要求较高的室内工作场景的需求,因此开展移动机器人的多传感器融合定位和建图研究具有重要意义。针对复杂的室内环境,本文提出了一种低成本的基于激光雷达和视觉相机融合的定位和建图系统,以提
学位
蛋白质翻译过程中,氨基酸根据m RNA模板序列顺次加到延伸肽链的过程称为翻译延伸步骤(translation elongation),这个过程是蛋白质翻译的核心。核糖体移位(translocation)使得t RNA和m RNA能在核糖体上按序进入和离开,是翻译延伸步骤中最基本的子步骤。核糖体移位主要分为两个步骤,首先核糖体和t RNA发生构象变化,形成翻译杂合态(hybrid state);第二
学位
空分供气网络是钢铁企业的重要组成部分,为炼钢炼铁流程提供高纯度的氧气、氮气和氩气。然而在实际的供气过程中,由于下游用气的频繁波动,极易出现供气不足或者气体放散等现象,进而产生了大量的资源浪费以及经济损失。企业在降本增效的目标下迫切需要通过调度来合理的安排装置运行,及时的响应需求侧的变化,减少放散的同时能够降低生产能耗,提高经济效益。本文从企业生产调度的流程出发,针对月调度方案制定、不确定性场景下的
学位
随着老年化社会的到来,神经退行性疾病未来可能会超过癌症成为世界上第二大致死性疾病,其最常见的特点是神经元细胞会逐渐变性和死亡,而中枢神经系统不具备再生性。干细胞疗法作为神经退行性疾病的一种新型治疗选择,在癫痫、阿尔茨海默症、帕金森疾病等神经退行性疾病中有着广泛的应用前景。间充质干细胞具有来源广泛、取材简便、致瘤性低等多种优点,在不同条件下可以往三个胚层方向分化,包括心肌细胞、皮肤细胞以及多种神经元
学位
水稻是全球一半人口的主食,而气候变化对水稻生产有显著的负面影响。因此,提高水稻适应气候变化导致的高温等一系列问题,兼顾水稻的产量和环境代价,同时增强水稻生产的可持续性,具有重要意义。然而,目前水稻生产中还没有有效的方法来应对高温,本研究研发了“藻覆盖水稻栽培”技术,用以在水稻栽培时降低土壤根区温度和降低温室气体排放,并提高土壤生物质含量。本研究以藻株根枝藻属Rhizoclonium sp.和水稻O
学位
SOX转录因子参与动物生殖过程,其在多个物种中被证实与精子发生有关。然而中华绒螯蟹SOX家族与精子发生的关系却鲜有报道。在本课题中,我们研究了Eriocheir sinensis SOX8在中华绒螯蟹精子发生过程中的功能及其可能的分子机制。免疫荧光结果表明,Es-SOX8主要分布在中华绒螯蟹的精原细胞、精母细胞和圆形精细胞的细胞质和细胞核中,但在成熟精子中未见表达。为研究EsSOX8在精子发生中的
学位
在哺乳动物中,CD40和CD154是一对重要的共刺激分子,它们介导了细胞和体液免疫,包括T细胞激活、B细胞增殖、抗体类别转化和生发中心形成等。然而,有关CD40和CD154分子在低等脊椎动物中的研究却十分有限。本论文在我国特有经济鱼种——大黄鱼中鉴定了CD40和CD154的同源基因,探讨了CD40和CD154分子在大黄鱼适应性免疫和同种异体免疫中的作用。同时,还以斑马鱼为研究模型,探讨了CD40和
学位
不孕不育是全球范围内被重点关注的公共卫生问题,而精子发生异常是男性不育的重要病因。精子发生可分为精原细胞的有丝分裂、减数分裂以及精子变形三个阶段。其中减数分裂是特殊的细胞分裂,是生物繁育中最基础的一环。在本课题中,基于前人的研究,我们注意到睾丸特异性蛋白MAPS,它从减数分裂的粗线期开始表达,缺失后导致雄鼠不育,但是MAPS参与减数分裂的分子机制仍还有很多未知值得深入探究。在本研究中,我们计划通过
学位
随着全球气候的变化以及人类活动对生态平衡的破坏,水资源短缺已经成为人类面临的重要环境问题,其中干旱是制约农业生产的重要因素,研究植物如何响应干旱、培育抗旱作物是解决这一问题的关键。类受体激酶(Receptor-like Protein Kinases,RLKs)是植物中最大的基因家族之一,近年来已有研究报道RLKs作为多种信号的受体在植物的生长发育、免疫应答以及非生物胁迫等方面发挥着重要的作用,但
学位
植物对土壤养分的吸收除了植物自身的因素外,根际和根内的微生物种群对养分的活化、转运和吸收也起到关键作用。因此,根际和根内的微生物种群是描述植物生命活动的另一个维度,被认为是植物的第二基因组。禾本科作物水稻在缺铁条件下,通过向根际分泌麦根酸类物质——2’-脱氧麦根酸(Deoxymugineic acid,DMA),螯合土壤中被固定的三价铁(Fe3+),再通过Fe3+-DMA转运体将铁素转入水稻根内,
学位