论文部分内容阅读
人工林正逐步成为世界森林资源的关键组分,并在整个森林可持续经营管理过程中发挥着重要作用。然而,长期以来为了片面追求经济效益,国内外人工林都存在诸如生物多样性丧失,土壤肥力退化,生态系统稳定性降低等问题。在我国亚热带,为减少低效人工林带来的负面影响,促进人工林的多目标经营,提高人工林的生态功能和经济价值,许多乡土珍贵阔叶树种(包括固氮树种)逐渐被用于亚热带人工林营建的生产实践中。有关该地区不同森林经营措施对人工林影响的研究主要集中在林分生产力的经济效益方面。然而,由于不同人工林的凋落叶、根系的数量和质量以及冠层结构等的差异都将导致土壤环境特征、理化性质,以及土壤生物化学过程的不同。因此,从生态功能的角度深入探索不同营林模式对人工林生态系统碳氮特征的影响变得十分必要。全球CO2浓度和温度升高、氮沉降、物候变化和干旱胁迫等都可能导致森林枯落物输入量发生变化,因此,在研究森林土壤碳氮动态变化过程中考虑枯落物输入改变的影响变得非常重要。为此,本研究在南亚热带的广西壮族自治区凭祥市中国林业科学研究院热带林业实验中心选取了林龄相同、立地条件相似、位置邻近的三种幼龄人工林类型[格木(Erythrophleumfordii)纯林、马尾松(Pinus massoniana)纯林、格木与马尾松混交林]为研究对象,同时结合凋落物输入的控制实验,主要采用常规理化分析法、气压过程分离技术(BaPS)和磷脂脂肪酸技术(PLFA),研究了:1)不同树种人工林生态系统碳氮储量及其空间分布特征;2)不同树种人工林土壤呼吸和总硝化速率以及微生物群落结构的季节变异;3)人工林土壤呼吸和总硝化速率以及微生物群落结构对凋落物输入改变的响应;4)环境因子与土壤呼吸和总硝化速率之间的相关关系,以期为南亚热带人工林经营过程中的树种选择及合理的营林方式提供数据参考和科学依据。主要研究结果如下:(1)格木、马尾松幼龄纯林及马尾松与格木混交林生态系统碳氮储量存在差异。格木、混交林和马尾松人工林生态系统总碳储量分别为134.07t hm-2、137.75t hm-2和131.10thm-2,总氮储量则分别为10.19t hm-2、8.68t hm-2和7.01t hm-2。三种人工林生态系统碳氮库空间分布基本一致,绝大部分碳氮储存于0~100cm土壤层,平均分别占生态系统总碳和氮储量的81.49%和96.91%,其次为乔木层(分别占17.52%和2.69%),林下植被和凋落物层所占比例最小。林地土壤碳主要集中于表土层,其中,0~30cm土层平均碳储量为52.52t hm-2,占土壤总碳储量(0~100cm)的47.99%,土壤氮的分布则无明显规律。相比于纯林,与固氮树种混交的营林方式表现出更大的碳储存能力。同时,三种幼龄人工林生态系统较低的地上与地下部分碳氮分配比,表明其仍具有较强的碳氮固持潜力。(2)三种人工林土壤呼吸和总硝化速率均呈现明显的季节变异(p<0.05),具体表现为,土壤呼吸和总硝化速率从2012年9月到2013年1月的旱季下降至最低值(平均分别为2.63mg C kg-1SDW d-1和0.34mg N kg-1SDW d-1),然后持续升高直到2013年7月的雨季(平均分别为22.44mg C kg-1SDW d-1和1.23mg N kg-1SDW d-1)。土壤呼吸和总硝化速率与土壤温度和湿度之间存在显著相关关系(p<0.05),表明土壤温度和湿度是影响土壤呼吸和总硝化速率的关键环境因子。土壤全氮、铵态氮和硝态氮与土壤呼吸和总硝化速率也呈显著相关关系(p<0.05),这表明土壤碳氮转化作用在受土壤微环境条件影响的同时,还受土壤其它环境因子的综合影响。不同人工林中,格木人工林土壤呼吸和总硝化速率显著高于混交林和马尾松林(p<0.05),这主要归因于树种生物学特性的差异,阔叶固氮树种格木较高的凋落叶和细根生物量和质量以及较快的分解速率使得林地土壤养分和底物有效性高于其它两种人工林。与其它研究结果对比表明,土壤呼吸和总硝化速率,以及Q10值均可能因植被类型、立地质量、林龄或气候带的不同而有差异。(3)三种人工林旱季平均土壤微生物PLFAs总量、细菌PLFAs量、真菌PLFAs量、放线菌PLFAs量及丛枝菌根真菌PLFAs量分别比雨季高170.1%、182.1%、152.1%、232.5%和185.2%(p<0.05)。不同人工林中,马尾松林旱季土壤微生物的PLFAs总量、细菌PLFAs量、真菌PLFAs量、放线菌PLFAs量均最高,混交林次之,格木林最低;而雨季格木人工林土壤微生物的PLFAs总量、细菌PLFAs量、真菌PLFAs量、丛枝菌根真菌PLFAs量显著高于马尾松林(p<0.05)。主成分分析结果表明,土壤微生物群落结构组成受林分类型和季节的双重影响。冗余分析表明,土壤温湿度、pH值、全氮及铵态氮含量与单个特征磷脂脂肪酸之间呈显著相关关系(p<0.05),这表明不同人工林营建改变了土壤微环境条件、凋落叶和根系基质数量和质量,以及土壤的理化性质,特别是土壤氮含量,从而进一步直接或间接驱动土壤微生物群落结构的改变。此外,全年(旱季和雨季)水平上,混交林土壤真菌/细菌比(分别为0.27和0.31)始终高于马尾松林(分别为0.26和0.28)和格木林(分别为0.22和0.26)(p<0.05),表明格木与马尾松混交更有利于提高土壤生态系统的稳定性。(4)不同枯落物处理格木和马尾松土壤呼吸和总硝化速率均呈现明显的季节变异,雨季格木和马尾松土壤呼吸速率平均分别是旱季的7.12倍和6.07倍;雨季土壤总硝化速率则分别是旱季的3.37倍和3.89倍。枯落物处理实验前期(2012年9月和11月),两种林分土壤呼吸和总硝化速率随枯落物的增厚而减小,主要因不同林地土壤温度而引起。随着枯落物处理时间延长至2013年,土壤呼吸和总硝化速率随枯落物增厚而增加,主要与土壤养分和可利用底物有效性有关。与对照相比,凋落物去除处理的格木和马尾松土壤呼吸分别平均降低3.59%和2.68%,凋落物添加处理则分别平均提高14.08%和26.54%;凋落物去除处理的格木和马尾松土壤总硝化分别平均降低11.52%和17.67%,凋落物添加处理则分别平均升高9.69%和2.22%。相关分析结果表明,两种林分土壤呼吸和总硝化速率均受土壤温度、湿度、全氮、铵态氮和硝态氮等多种环境因子的综合影响。不同枯落物输入在影响土壤微环境特征的同时,也驱动其微生物群落结构发生变异。冗余分析表明,格木土壤微生物群落结构主要受土壤温度和铵态氮含量的影响,而土壤温度和硝态氮含量则是影响马尾松土壤微生物群落结构最主要的环境因子,这表明不同人工林类型中影响土壤微生物群落结构的环境因子不同。微生物作为土壤养分循环的关键驱动者,其对枯落物输入改变的响应将影响土壤碳氮转化速率。相关分析表明,无论是枯落物去除或是添加处理,大部分微生物特征PLFAs对土壤碳氮转化作用有显著影响。