二氧化锡负载过渡金属催化氧化CO的理论与实验研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:tianshi6868
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
一氧化碳(CO)是一种无色、无味、危险、易燃、有毒的气体,具有一定的还原性,在空气中能持久稳定存在。CO作为最有害的碳氧化物,亟需开发一种高灵敏度、高选择性和可靠的传感器,用于实时检测低浓度CO。亦可制备一种高效催化剂,将CO直接转化为无毒的CO2。作为n型半导体,Sn O2具有价格便宜、耐光、耐热等诸多优点,并且可以活化表面的吸附氧。因其优越性在众多过渡金属氧化物中脱颖而出,成为一种受欢迎的催化材料。在本论文中,利用密度泛函理论(DFT)系统地研究了一系列分散在Sn O2(110)完美表面的过渡金属原子,包括贵金属和非贵金属。作为低温CO氧化的候选催化剂,针对吸附前后表面构型的变化、Bader电荷、差分电荷、态密度(DOS)等进行了详细讨论。金属在Sn O2(110)完美表面的最佳吸附位点是HL位点,即表面O2C原子和Sn5C原子之间的桥位。还研究了整个体系的结合能,发现所有金属都能稳定地锚定在Sn O2(110)表面。复合材料的电子性质表明,一些金属如Ru、Rh、Pd等,与Sn O2载体之间存在活跃的电荷转移。同时,DOS证实某些材料具有磁性。投影态密度(PDOS)在费米能级附近出现了小杂峰,杂峰的引入导致吸附后体系的能量降低。值得注意的是,靠近费米能级的地方出现了Pt的5d态和6s态,Pt的d带中心最接近费米能级,处在-1.00 eV的位置,这可能表明其具有非凡的反应活性。因此,最终确定将Pt负载在Sn O2上。随后,通过硼氢化钠还原法合成了PtNPs/SnO2,对其结构及传感性能进行了初步研究。TEM表明Pt高度分散在Sn O2载体的表面,Pt颗粒的平均粒径仅为2.8-3.4 nm,预示着其有良好的性能。XPS数据显示,Pt~0占比高达75%,而Pt~0正是其优异活性的来源。实验结果表明,0.5 wt%Pt NPs/Sn O2的CO传感性能远远优于纯Sn O2,与理论计算结果相符。0.5 wt%Pt/Sn O2传感器的响应时间仅为36 s,恢复时间仅为30 s,分别提升了3倍和5倍。此外,还利用DFT探究了Sn O2(110)完美表面上的Pt的CO反应机理,从原子层面系统探讨Pt单原子与Sn O2载体是如何作用的以及作为“活性中心”的Pt单原子吸附小分子反应物后的电子结构。特别是CO与O2共吸附时,转移了0.74|e|。结果证实,CO氧化反应遵循L-H机理,其CO氧化的速率决定步骤是*OOCO中间体形成的步骤,势垒为0.58 eV。
其他文献
以现代物理学为理论基础发展起来的微电子技术和5G通信需求带动了微电子工业的迅猛发展,随之而来的是以集成电路为首的电子器件的不断更新换代。目前的主流趋势是电子元件的微型化和集成电路的超大规模化,但也出现了诸如信号延迟、信号损耗、信号串扰等诸多问题。解决上述问题的关键在于优化相应功能材料的介电常数,因此急需寻找满足上述要求的特种材料。聚酰亚胺因其具有优异的综合性能在微电子工业中用途广泛,但其介电常数有
学位
室温钠硫电池(RT Na-S)因其较高的理论比容量、低廉的成本而备受关注。但其电解质NaPF6极易与痕量水反应生成HF,侵蚀界面膜,导致循环稳定性不佳。此外还普遍存在库伦效率和可逆容量较低等问题,极大限制了RT Na-S电池的商业化进程。本课题以消除HF,提升库伦效率为研究目的,以元素基团和作用机制为切入点,总结了含F、P、B、Si、S电解液添加剂的共性特点,并针对以上问题筛选出了合适的添加剂。合
学位
光生物学制氢技术可利用太阳能作为能量的直接来源,以可再生的生物体或生物酶充当产氢的催化剂,是目前制氢领域的研究热点。在光照和无氧条件下,莱茵衣藻中的氢化酶能够将光解水或胞内有机物分解所产生的质子和电子催化转化为氢气。然而,正常光合作用产生的氧气极易使氢化酶失活,从而降低莱茵衣藻的产氢效率。本文借助莱茵衣藻细胞的内吞能力,通过胞内修饰耗氧的级联酶纳米粒子构筑莱茵衣藻杂化细胞,直接降低了胞内氧含量,缩
学位
由于锂离子电池商用的石墨负极理论容量较低,难以满足目前电子设备快速增长的能源需求。因此寻找长循环寿命和高可逆容量的替代电极材料成为目前研究的重点。基于转换反应的锰基氧化物具有更高的理论容量,被认为是有前途的负极材料,但它的实际应用受到低本征电导率和严重体积膨胀问题的阻碍。为了解决上述问题,可以采用构筑复合和设计特殊结构如空心结构的策略。由金属有机框架(MOFs)衍生出的材料具有众多优势特性,如可以
学位
大气中二氧化碳(CO2)含量上升导致的温室效应是近年来人们普遍关心的环境问题之一,碳捕获和储存(Carbon Capture and Storage,CCS)技术是减少CO2排放的有效手段。燃烧后CO2的捕获,即CO2/N2吸附分离,是CCS技术的重要组成。沸石因低压吸附容量大、稳定性好而被广泛用于CO2/N2吸附分离领域。其中,13X沸石是较常用的商用吸附剂,但由于其孔径单一,导致吸附扩散阻力大
学位
过去几十年中,随着煤、天然气等不可再生资源的消耗,能源危机和环境污染问题日益严峻,光催化技术因可以利用太阳能分解水生成氢气,对污染物也有较好的降解效果而受到研究者广泛关注。但半导体光催化剂往往存在自身电子空穴复合率高、光腐蚀严重等不足,限制了光催化性能的提升。因此,寻找性能优越的光催化材料并通过适当的改性方法提高其光催化性能成为研究的热点。g-C3N4是一种新型的光催化材料,其本身不含金属元素,具
学位
水系锌离子电池(AZIB)以其高安全性及低成本等优势有望成为锂离子电池的替代储能设备,然而,由水电解液引发的一系列副反应(不可控的锌枝晶,正极材料的溶解,负极材料的溶解、腐蚀、钝化,水分解)及液体泄露问题仍待解决。近年来,人们针对这些问题提出了多种解决策略,但是,针对某一问题对电解液进行优化后往往会加剧另一副反应的发生。采用“无溶剂”的固态聚合物电解质(SPE)代替水电解液逐渐受到人们的广泛关注,
学位
随着能源需求持续增加,干旱和沙漠地区建设了大量的光伏发电站,光伏面板表面的灰尘堆积问题日益严重,导致发电效率降低。超疏水涂层由于其具有抗污、自清洁、防雾等特性能够有效解决灰尘堆积问题。然而,通常以二氧化硅为原料制备的涂层耐磨性弱以及和基底之间结合力差,且干旱条件下无法防尘,限制了实际应用。本课题采用溶胶凝胶法制备的Si O2溶液构筑粗糙结构,硅烷提供低表面能基团,随后涂料中引入PDMS颗粒增加耐磨
学位
自由基介导的烯烃分子内基团迁移为合理调控烯烃提供了一种有效的工具。这种方法可以发生特定基团(如芳基,炔基)的重排,进而生成不同基团迁移的产物。这种反应大多条件比较温和,底物的基团普适性很好,可完成重要基团分子内迁移并实现烯烃的双官能团化,使反应符合绿色化学要求,增加原子经济性,有着很大的合成意义和研究价值。炔基是有机化学中十分关键的一个官能团,炔类化合物在有机化学、药物化学和化学生物学等多学科交叉
学位
人类社会活动产生的大量污染物对人类身体健康及生态环境构成了严重威胁。因此,开发高效灵敏的污染物检测材料及技术有着重要意义。作为一种新型荧光探针材料,配位聚合物以其高选择性、高灵敏性等优势迅速成为了研究热点之一。针对硝基芳香族化合物(NACs)、高锰酸盐(Mn O4-)及部分重金属阳离子等污染物的荧光检测研究还相对较少,因此本研究采用原位水热/溶剂热法等方法设计合成了系列高选择性、快速响应及低检测限
学位