论文部分内容阅读
研究背景肾综合征出血热(Haemorrhagic fever with renal syndrome,HFRS)又称流行性出血热,是一种由不同种类的汉坦病毒传播给人类引起的动物源性人兽共患病。病毒对人类的主要传播途径是通过吸入或者接触受病毒污染的啮齿动物排泄物(尿液、粪便或唾液)。中国是世界上肾综合征出血热病例最多的国家,70%左右的肾综合征出血热病例是由汉坦病毒(HTNV)和汉城病毒(SEOV)引起的,部分病例发展为中、重度病例并引发严重后遗症甚至死亡。全球HFRS病死率为1%-1 5%。自上世纪八十年代以来,我国肾综合征出血热的发病呈现较为明显的季节性分布变化,由秋冬季暴发为主的姬鼠型转变为春季和秋冬季为主的双峰型混合疫区,这种变迁与病毒的基因型、优势宿主动物的种类、自然地理环境、人类生产活动和行为方式有密切关系。然而,随着我国肾综合征出血热疫区范围的扩大和疫区类型的变迁,我们仍需要不断掌握HFRS的人群流行特征、时空分布特征和趋势。HFRS的发生受多方面因素的影响:环境因素、啮齿类动物、人类与动物宿主之间的相互作用和汉坦病毒的动力学因素等。其中,气象因素可通过生态系统影响啮齿动物的生存、繁殖、分布和种群变化,间接影响HFRS的流行。在全球变暖的背景之下,媒介生物和宿主生物的适生区域有可能随之扩大,且气候变暖可能会有利于动物繁殖和活动期延长。人类的活动也受天气条件和季节变化的影响,从而改变人类与媒介生物和动物宿主之间的接触机会。另外,城市化建设背后的大规模树木砍伐、土地征用、修路建桥等会直接影响到宿主动物的数量和分布,可能会造成局部媒介生物和宿主动物密度增大,引起疾病的暴发。当今社会经济发展伴随的流动人口不断增多、物流的发达和城市人口密度的增加,也会导致传染病暴发流行风险上升。气候变化与不同地理景观及生态系统相互作用,导致在各个气候带内温度等分布的异质性,对HFRS的影响也有所不同。尽管目前已经有大量的研究量化分析了气象因素与HFRS的关联,但是这些研究大都是基于某个城市/省份的部分地区,且少有气象因素对HFRS交互作用的研究。所以本研究在纳入社会因素、地理因素和生态因素的同时,系统探讨了我国各气候带气象因素对HFRS的影响,以及气象因素对HFRS的交互作用和边际效应。随着人们健康需求的日益提高,疾病预测作为疾病防控的重要手段也得到重视和发展。传染病的影响因素众多,相互之间关系复杂,模型预测的准确性是疾病预测极其重要的一个方面。随着信息技术的发展和大数据时代的到来,机器学习作为新兴的分析方法得到了迅速发展和广泛应用,如何利用大数据对传染病疫情进行预测预警已成为疾病防控领域的研究热点。为了探索机器学习在肾综合征出血热预测的实用性,为HFRS的预测提供新思路,本研究以我国各气候带HFRS病例为研究对象,通过构建随机森林回归预测模型,并与传统的预测模型进行比较,对各气候带的拟合和预测效果评价。研究目的1.应用空间流行病学分析方法,分析2006-2016年全国HFRS病例的流行特征和时空分布动态变化。2.纳入气象因素、社会因素和地理环境等相关指标,对我国各气候带HFRS流行的影响因素进行探讨。3.构建针对不同气候带的HFRS预测模型,为精准预测HFRS的流行提供可行工具。研究方法收集整理我国2006-2016年的肾综合征出血热的疫情监测数据、2005-2016年全国气象监测站点的气象数据、2006-2016年全国植被覆盖和海拔栅格数据,与中国地级市行政区划数字地图建立空间关联,建立肾综合征出血热流行的地理信息数据库,综合应用空间流行病学分析方法对全国HFRS的时空分布进行研究,应用广义估计方程对不同气候带HFRS的影响因素进行分析,利用随机森林回归模型对HFRS的发病进行预测研究。研究所采用的软件包括ArcGIS 10.2、SaTScan 9.1、Stata 16.0、R 3.4.3。研究结果1.我国2006-2016年累计报告HFRS共121,494例,年平均发病率0.89/10万。全国HFRS发病率总体略有下降趋势,年平均发病率从2006年的1.16/10万降至2016年的0.64/10万,但2012-2013年出现较为明显的短期升高。2.人群分布特征为:HFRS病例以男性为主,男女病例报告性别比为3:1;从职业分布看,病例以农民为主;发病年龄主要集中在20-40、41-60岁之间,分别占发病病例数的33.08%和46.04%。死亡病例年龄集中在41-60岁之间,占死亡病例的53.83%。3.对2006-2016年期间全国HFRS累计病例报告数分省份进行HFRS病例发病至确诊时间间隔分析,结(?)国范围内HFRS病例发病至确诊的平均时间为7.6天。黑龙江省、吉林省、河北省(?)陕西省的HFRS病例发病至确诊时间间隔最短,平均为5天,辽宁省和山东省该时间间隔平均为6天,浙江省、江西省和湖北省为8天,广东省为10天,其他省份该平均(?)间间隔为9天。4.全国HFRS的病例分布具有空间相关性,即HPRS疾病分布具有空间聚集性特征。对2006年1月至2016年12月肾综合性出血热发病数的地市级水平进行逐月时空扫描,结果显示共有13个聚集区。尽管不同年份HFRS发病热点区域有所不同,但热点区域主要分布于东北三省、山东省、陕西省、浙江省、江西省和湖北省。5.HFRS发病具有明显的季节性特征,其季节性特征在我国不同地区存在着一定的差异。中温带地区秋季高峰明显,暖温带地区秋冬季和春季均有高峰,亚热带地区呈现冬季和春季高峰。就发病趋势而言,2006-2009年期间,中温带地区HFRS发病人数高于暖温带和亚热带,自2009年起,暖温带发病数上升明显且超过中温带,至2013年上升至最高峰后急剧下降呈稳定趋势。中温带地区发病数从2006年至2016年呈缓慢下降趋势。6.调整降水量、相对湿度、季节性和长期趋势的影响,得到中国不同气候带的月平均气温与HFRS发病的最大相关系数。中温带地区的气温在滞后1个月(r=-0.032)时对HFRS发病数影响最大,暖温带地区和亚热带地区气温的最佳滞后期分别为滞后2个月(r=-0.057)、3个月(r=0.018)。7.中温带地区的平均温度和降水量之间存在1个月滞后交互作用。在暖温带地区,平均温度和相对湿度之间存在2个月滞后的交互作用。8.中温带地区气温、相对湿度、海拔、人均耕地面积、GDP与HFRS发病之间的关联有统计学意义,其中气温、相对湿度、海拔、GDP是保护因素,人均耕地面积是危险因素。暖温带地区气温、相对湿度、海拔与HFRS发病有统计学意义,其中气温、海拔是保护因素,相对湿度是危险因素。亚热带地区对HFRS发病具有统计学意义的影响因素是降水、海拔和GDP,其中降水是危险因素,海拔、GDP是保护因素。9.分别利用植被覆盖指数与气象指标(温度、湿度和降水量)所构建的随机森林回归预测模型在各气候带内的预测效果近似;各气候带之间拟合效果表现为从北方到南方拟合效果越来越好,且随机森林模型的RMSE均小于广义估计方程。随机森林回归模型对于中温带地区发病率的估计偏高,对暖温带和亚热带地区的估计值比较接近于真实值。广义估计方程回归模型对中温带、暖温带和亚热带地区的HFRS发病率的预测值普遍低于真实值。结论1.2006-2016年期间我国肾综合征出血热的发病总体呈下降的趋势。病例以男性为主,发病高峰年龄段为20-60岁之间,患者职业以农民为主。空间分析显示,HFRS病例的空间分布具有显著的相关性且高发省份存在时空聚集区。2.北方高发省份的HFRS病例发病至确诊时间间隔较短,而南方省份的HFRS病例发病至确诊时间间隔普遍比北方省份长,该时间间隔与确诊病例的数量呈正相关。3.不同气候带的发病趋势变化存在明显差异。2006-2009年期间,中温带地区HFRS发病人数高于暖温带和亚热带,自2009年起,暖温带发病数上升明显且超过中温带成为发病数最多的气候带。4.从我国北部地区到南方,三个气候带气温的最佳滞后期分别为1个月、2个月和3个月。最佳滞后时间的确定可以为HFRS发生的早期预警提供线索。5.中温带地区温度与降水对HFRS存在交互作用,气候寒冷、降水量增大可能增加中温带地区HFRS的发病风险。暖温带地区温度与相对湿度对HFRS的影响存在交互作用,高温高湿的环境可能增加暖温带地区HFRS的发病风险。6.中温带和亚热带GDP高的地区HFRS发病风险较低;中温带、暖温带和亚热带均发现海拔低的地区HFRS发病风险较高;中温带地区人均耕地面积大可能增高HFRS的发病风险。农村仍然是HFRS的高发地区。7.随机森林模型在各气候带HFRS预测准确性上均优于广义估计方程。植被覆盖指数可替代气象指标(温度、湿度和降水量)用于HFRS的预测。意义和创新1.本研究的设计、分析比较及模型构建皆基于中国不同气候带,设计系统、理念新颖。2.本研究发现,从我国北部地区到南方,中温带、暖温带、亚热带地区气温的最佳滞后期分别为1个月、2个月和3个月。中温带地区的气温和降水存在交互作用,暖温带地区气温和相对湿度存在交互作用,此结果目前未见报道。3.本研究分别利用植被覆盖指数和主要气象指标(气温、湿度和降水量)构建肾综合征出血热的预测模型,结果显示,利用植被覆盖指数所构建的预测模型与利用上述气象指标所构建的预测模型在各气候带内拟合效果近似;各气候带之间拟合效果表现为从北方到南方拟合效果越来越好的现象,此结果目前未见报道。