论文部分内容阅读
随着我国经济全球化进程的不断加快,我国对国际能源及原材料市场的依赖程度不断加深,当前国际原油及工业原材料价格的不断攀升,对我国的经济发展造成的极大的负担。汽车作为耗油大户,其节能与否已直接影响到我国整体的能源消耗水平,国家对此高度重视。由于汽车轻量化对节能增效的巨大意义,国际各大汽车生产商都在尽可能的情况下减轻车身质量。汽车的轻量化设计技术已经成为目前汽车研究领域的研究热点之一。 车架是重型载重汽车的重要部件,支承着发动机、离合器、变速器、转向器、驾驶室、和货箱等所有簧上质量的有关机件,承受着传给它的各种力和力矩。此外,由于重型载重汽车的使用条件十分恶劣,受力状况非常复杂。车架应有足够的弯曲刚度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小;车架也应有足够的强度,以保证其有足够的可靠性与寿命,纵梁等主要零件在使用期内不应有严重变形和开裂。车架刚度不足会引起振动和噪声,也使得汽车的乘坐舒适性、操作稳定性及某些机件的可靠性下降。但车架的扭转刚度又不宜过大,否则将使车架和悬架系统的载荷增大并使汽车轮胎的接地性变差,使通过性变坏。因此,如何设计出满足使用要求的轻量化车架成了一项具有挑战性的工作。 有限元法已经成为现代汽车设计的重要工具之一,与传统的设计方法相比,它的优势在于提高汽车产品的质量、降低产品开发与生产制造成本,提高汽车产品在市场上的竞争力。为了促进车架设计水平的提高,保证整车在市场上的竞争能力,必须将车架有限元分析技术提高到战略的高度上来。 本文基于ANSYS软件建立了车架结构的实体单元模型,对汽车车架结构进行静力和动力分析的研究。首先,对ANSYS进行了简要的介绍,为车架结构进行有限元分析做好准备工作;其次,以某重型载货汽车车架结构为研究对象,利用ANSYS建立了车架结构有限元的实体单元模型,对车架建模过程进行了研究;再次,对车架结构的静、动态特性进行深入研究,对车架进行性能分析评价;最后,建立车架结构简单的梁单元优化模型,以车架纵梁截面尺寸作为设计变量,以车架总体积为设计目标,运用ANSYS优化模块对车架结构的轻量化设计进行初步的探讨。 本文的研究说明有限元法和Ansys软件为车架结构及动力特性的仿真以及轻量化设计提供了良好的基础理论及方法,借助于它们对车架结构的轻量化设计研究具有非常重要的工程价值。