论文部分内容阅读
随着世界范围内的能源危机及各国对汽车尾气排放要求的不断提高,汽车电子控制化已经成为一种必然的趋势。传统的燃油供给方式和点火系统发动机远不能满足汽车发动机在动力性、经济性及排放性等方面的要求而被淘汰,取而代之的是电子控制发动机。本文针对当前我国汽车发动机的现状及实现电控化和降低排放污染物的首要任务,通过对国内外汽油机电控系统研究发展的相关资料进行分析,结合我们的实际状况,以山西淮海机械厂生产的465Q电控汽油机作为研究对象,选择汽油机电子控制作为主攻方向,设计开发一套性价比较好的电控系统,实现对汽油机燃油喷射及点火系统的控制,为我国采用自主知识产权的电控系统做出努力。同时针对传统的PID控制存在的自适应能力不强,控制精度不高的问题,研究了智能控制如模糊控制及神经网络理论在汽油机怠速及点火喷油控制中的应用。本文首先分析了汽油机电控技术和465Q发动机喷油及点火系统的控制原理。465Q汽油机的电控系统采用美国德尔福(Delphi)所配套的发动机管理系统,该系统采用分组同时多点燃油喷射及无分电器两缸同时点火方式,通过进气歧管绝对压力传感器(MAP)、转速及曲轴位置传感器(CPS)、冷却液温度传感器(CTS)、进气温度传感器(IAT)、节气门位置传感器(TPS)、氧传感器(O2)等元件,采集汽油机运行过程中的各种状态参数,控制单元对采集到的信号进行筛选、处理,结合预先通过台架试验获得的基本控制MAP图,计算出可使汽油机运行于最佳状态的喷油脉宽和点火提前角,从而驱动执行机构,实现对汽油机空燃比、点火提前角的最优控制。针对发动机不同工况的特点,分析了汽油机对可燃混合气空然比的控制要求及点火系统的控制要素,建立了与各种工况相对应的燃油喷射和点火控制策略,其中包括起动工况、暖机工况、怠速工况、部分负荷工况、大负荷工况、加减速工况及断油工况等。通过分析研究国内外相关资料,确定所要使用的单片机型号,本课题采用Intel公司生产的16位80C196KB芯片进行设计研究,在尽量保持原传感器不变的前提下,设计出一套电控汽油机燃油喷射及点火控制系统。硬件电路设计主要包括程序存储器和数据存储器的扩展电路、输入信号处理电路、燃油喷射和点火驱动电路等,由于控制信号的输出是通过80C196KB单片机的高速输出(HSO)系统来完成的,无需CPU干预,具有响应快速的特点。软件设计包括各工况喷油程序设计、点火程序以及信号采集、处理程序等,同时为保证ECU运行的可靠性和稳定性,对系统的软、硬件分别进行了抗干扰设计。控制系统采用静态预定最优控制方式即依据预先对发动机控制参数进行离线优化而得的脉谱(MAP),实现对空燃比和点火提前角的控制。在发动机运行过程中,由传感器检测发动机工况信息,查取脉谱中预定的控制量,通过执行机构得以实现。因此设计了电控汽油机脉谱测量试验系统,利用德尔福汽车发动机电控系统PCHud测控软件,测取了汽油机喷油和点火控制的三维脉谱图,并为神经网络的训练提供样本。考虑到发动机怠速工作过程的非线性、时变性、不确定性及不易建立精确数学模型的特点,研究了模糊控制理论在发动机怠速控制系统中的应用,设计了一种汽油机怠速转速模糊控制系统,并利用MATLAB所提供的simulink仿真工具确定了控制系统的参数。利用神经网络对信息的处理具有自学习、自适应、分布记忆、自联想、容错性和高度非线性的这一优势,将BP神经网络应用于汽油机的控制中,探索对于发动机这种高度非线性系统进行喷油和点火控制的新策略。通过本课题的设计研究,基本实现了电控汽油机燃油喷射和点火系统的控制。可以进一步为实现汽油机管理系统的研究及国内电控汽油机的产业化提供参考,对推动我国电控技术的发展具有一定的意义。