Functionally-fitted Block Methods for Ordinary Differential Equations

来源 :上海师范大学 | 被引量 : 0次 | 上传用户:guorui146105
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
常微分方程在物理科学、生物科学、工程学和经济学等学科具有广泛的应用。然而,许多常微分方程的解析解很难得到,因此研究如何利用数值方法获得方程的近似解具有重要的理论价值和实际意义。  目前,用于求解常微分方程初值问题的数值方法主要有Runge-Kutta方法、线性多步法、块方法、边界值方法等等。这些方法的主要特点是具有常系数,且对多项式形式的解能进行精确计算。近年来,许多学者研究了变系数的数值计算方法,它要求数值解对以三角函数、指数函数或者它们与多项式的组合作为基函数的解是精确的。相较于常系数数值方法,变系数数值方法在求解某些常微分方程初值问题时更具优势,特别是当微分方程的解具有明显的指数衰减性、周期性或震荡性时。  本论文旨在基于块隐式单步法构造求解一阶和二阶常微分方程初值问题的函数拟合块方法,分别研究函数拟合块方法的收敛性及稳定性。主要内容如下:  第一章简要介绍常微分方程的基本概念和基本理论。第二章主要介绍求解常微分方程的经典数值方法(包括龙格库塔法和线性多步法)、块方法和函数拟合方法的国内外研究现状。  第三章旨在构建求解一阶常微分方程初值问题的函数拟合块方法。首先,基于Shampine和Watts[101]提出的常系数块隐式单步法,提出了一类新的依赖于时间和步长的变系数块方法(即函数拟合块方法),给出了该方法存在的两个充分性条件,讨论了方法的系数矩阵与时间无关的条件以及块方法与配置法的等价关系。其次,应用泰勒展开公式,通过细致分析该方法的性质,得到了方法的收敛阶。针对不同的基函数,讨论了方法的线性稳定性等问题。最后,我们给出一些数值例子来验证理论分析的正确性和函数拟合方法的有效性。  第四章旨在构建求解二阶常微分方程初值问题的函数拟合块方法。首先,构造了一类新的依赖于时间和步长的函数拟合块方法,给出了该方法存在的充分条件以及系数矩阵与时间无关的条件。其次,应用泰勒展开公式得到了方法的收敛阶。针对不同的基函数,讨论了方法的线性稳定性等问题。最后,通过数值例子验证函数拟合块方法的有效性。  最后,我们给出了本论文的主要结论并提出未来工作的设想。
其他文献
近年来,在模式识别、机器学习等领域,信息融合技术得到了迅速发展和广泛应用。信息融合包括三个阶段:数据融合、特征融合和决策融合,大量的分类器融合方法都是决策融合或者专
孔子的教育思想博大精深,经过千百年的沉淀,有些光辉的思想已成为我们的民族之魂。其德育思想在当前的新形势下,对促进当代中学生道德教育有重大意义。
  本文介绍了文章中所涉及的一些概念、术语和符号;在第二章中,我们讨论了整和图的性质;在第三章中,分别确定了图Kn,n-E(nK2)与图Gn,n的和数,定义了新图Pn,n、Ln并给出了和数的上
学位
采用温室盆栽试验,研究了不同浓度(0、20、40、60、80、100 mg·L-1)的外源抗坏血酸(AsA)与谷胱甘肽(GSH)对50 mg·kg-1镉(Cd)胁迫下石竹幼苗生长的影响.结果表明:50 mg·kg-
本文利用距离正则图中交叉表等方法,对HiroshiSuzuki在Ondistance-1-graphsofdistance-regulargraphs一文中提出的若干问题中的一个进行了讨论,得到了如下结果。 设Г是一个
本文考虑2个自由度的可积哈密顿系统的小扰动的不变环面的保持问题。利用自由度为2的特性,通过一个改进的KAM迭代,在没有任何非退化条件的情形下,证明了2个自由度的近可积哈密顿
近年来,小波变换理论以其独特的时频多尺度性,为信号分析、图像处理及其他非线性科学的研究领域带来革命性的影响。小波去噪是小波变换的重要应用领域之一。其中,阈值收缩去噪法
遗传算法是一类借鉴生物界自然选择和遗传机制的自适应全局优化随机搜索算法。遗传算法直接对结构对象进行操作,不存在函数可微性和连续性的限定,具有全局性,鲁棒性和隐并行
本文采用在线梯度法对网络进行学习,也就是每输入一个样本就对权值进行一次调整。在训练中加入随机输入是为了使网络更容易跳出局部极小。而加入惩罚项则可提高整个网络的泛化