【摘 要】
:
本文利用整函数以及单位圆内解析函数的对数精确级与对数精确型,研究了解析函数f1(z)+f2(z)的对数精确级与对数精确型,并利用Nevanlinna值分布理论及复线性微分方程理论研究了具有对数精确级系数二阶微分方程解的增长性.全文共分三章.第一章介绍了亚纯函数及Nevanlinna值分布理论的一些基本定义和常用符号.第二章在整函数或单位圆内解析函数f1(z),f2(z)的对数精确级具有相同极限下和
论文部分内容阅读
本文利用整函数以及单位圆内解析函数的对数精确级与对数精确型,研究了解析函数f1(z)+f2(z)的对数精确级与对数精确型,并利用Nevanlinna值分布理论及复线性微分方程理论研究了具有对数精确级系数二阶微分方程解的增长性.全文共分三章.第一章介绍了亚纯函数及Nevanlinna值分布理论的一些基本定义和常用符号.第二章在整函数或单位圆内解析函数f1(z),f2(z)的对数精确级具有相同极限下和具有不同的对数精确型的情况下,研究了函数f1(z)+f2(z)的对数精确级与对数精确型,丰富完善了原有的一些结论.第三章把整函数和解析函数的对数精确级与对数精确型运用到复线性微分方程当中,研究了一类具有对数精确级系数二阶微分方程解的增长性,丰富和完善了原有的复振荡理论.
其他文献
《澜沧春晓》是一首20世纪70年代中期由中国音乐学院琵琶教育家、演奏家王范地先生特邀中央音乐学院教授、作曲家王直先生共同创作的琵琶独奏作品。两位教授深入云南瑞丽地区进行采风,精心收集当地的民间音乐素材,融入三弦、葫芦丝和阿乌等少数民族乐器的音效,使该乐曲在听觉上别具一格,情绪欢快优美,极富表现力。本论文将《澜沧春晓》作为研究对象,结合现有的文献资料及自身的演奏心得,对其进行音乐分析及演奏技法的研究
带有浓郁民族气息的锅庄舞,在青藏高原无疑是一道靓丽的风景线;1995年,国务院颁布实施《全民健身计划纲要》,指出“全民健身计划实施对象是全国人民,重点是青少年和儿童”。2011年,国务院颁布实施《全民健身计划(2011-2015年)》,指出“丰富人民群众精神文化生活,形成健康文明的生活方式,提高全民族身体素质、健康水平和生活质量,促进人的全面发展”;2014年10月,国务院颁布实施《关于加快发展体
体育舞蹈在中国发展至今已有三十余年,因为其大众性和健身性的特点,受到我国人民的喜爱,吸引了众多参与者。近年来随着国内文艺体事业的蓬勃发展,对体育舞蹈的发展也提出了新的要求。不仅如此,我国目前正处于社会转型的关键时期,产生了许多思想和文化上的融合与碰撞,外来艺术的本土化有助于国内经济、文艺体事业健康、稳定的发展。红色文化是革命先烈用热血创造出来的先进文化,具有丰富的民族精神内涵,在其他领域帮助外来艺
筝曲《莲花谣》是王建民先生创作的一首具有代表性的古筝作品。本文以筝曲《莲花谣》为研究对象,运用理论结合实践的研究方法,分三个章节来分析之一主题。希望通过对这首作品曲式结构、音乐素材、节奏节拍等创作特色的研究和演奏技法以及各段情感表达的解析来探究这首音乐作品。本文将在第一章对筝曲《莲花谣》的作者及创作背景进行简单的介绍;第二章将通过对乐曲的曲式结构、音乐素材、节奏节拍的分析研究来阐述筝曲《莲花谣》的
“乡绅”在现代文学是一种多元而复杂的存在。作为“历史的中间物”,乡绅形象因时空的区隔和作家独特的创作理念,而呈复杂样态。本文以现代文学中的乡绅书写为研究对象,立足于文本细读和跨学科的研究方法,着力探析乡绅在现代文学里的复杂样态是如何建构与流变的。在此基础上,由形象建构、话语模式推及叙事伦理。由前所述,本文认为,乡绅书写以多元而复杂的风貌丰富了现代文学的创作实践。而就其文学史的意义而言,既在于它对“
沈榜《宛署杂记》是万历年间记载明代北京宛平县历史沿革、自然风貌、社会经济、风土民情、方言地理、内政街巷等的志书,是研究明代北京实际状况和风俗面貌的重要资料。《宛署杂记》的词语大都简单质朴,但亦存在不少的疑难词语。本文的目标是考释被确定为研究对象的疑难词语的释义,使用训诂学、语言学等方法对每个词语进行深入考察,探求疑难词语的确切含义,同时涉及到相关的历史背景等,用尽可能全面的材料对疑难词语进行解释,
陈拱《文心雕龙本义》是台湾《文心雕龙》研究的重要著作。《文心雕龙本义》有其独特而精密的体例,对前人的《文心雕龙》研究有深刻的认识。陈拱的《文心雕龙》文论疏解和文类批评释读,均显示了其深厚的中西学养,见解可谓独到。本文对《文心雕龙本义》进行了较为深入的研究,有助于大陆和台湾地区的龙学研究者的对话。本文主要分为六个部分。引言部分,概述《文心雕龙本义》的研究现状,说明研究思路及方法。第一章介绍陈拱生平、
本学位论文利用可数-定向集,引入了ω*-Rudin空间和ω*-well-filtered决定空间的概念,讨论了ω*-well-filtered空间及相关空间的收缩性、乘积性、反射性等基本性质,给出了ω*-well-filtered性的等价刻画,得到了如下主要结果:(1)ω*-Rudin空间的连续收缩仍然是ω*-Rudin空间;(2)ω*-well-filtered决定空间的连续收缩仍然是ω*-we
基因调控网络是系统生物学的重要研究内容.由于自然发生的调控网络过于复杂,设计和构造一些简单的合成基因调控网络为我们理解细胞的内部过程和生命现象提供了广阔的前景.一些简单的网络模块对于特殊的局部调控回路给出了良好的描述,然而更为重要更具挑战性的是如何理解它们作为更复杂系统的单元来发挥整体的作用,从而刻画整个生物体的行为.这篇文章详细地研究了两类通过群体感应机制耦合的具有顺式调控模块的压制振动子多细胞
近几十年来,随着非线性分析的发展,非线性微分方程解的存在性及非线性算子不动点问题研究显得越来越重要.伴随着科学技术与工程诸领域研究的突飞猛进,大量的实际问题往往都可以归结到非线性算子不动点问题或非线性微分方程解的存在性问题.本文讨论了两个问题,一是用半序方法在锥度量空间中得到了混合单调算子的几个不动点定理,二是用拓扑度理论和锥理论得到了三阶常微分方程m-点边值问题变号解的存在性.全文共分为四章.第