【摘 要】
:
通过外加作用力,将溶液相分散均一的具有一定形貌和粒径的纳米金颗粒(Au NPs)可控组装成纳米金二维单层膜,在传感检测、智能仿生、柔性器件等方面有非常广阔的应用前景。但是,目前构建纳米金二维膜的方法,尤其是界面自组装的方法中,通过简单快速的方法构建宏观大面积的,间距及纳米粒子定向可控的纳米金二维膜仍然是个难题。为了解决以上问题,实现纳米金二维膜构建方法的优化的同时扩展其多方面的应用,本文通过对纳米
【机 构】
:
中国科学院大学(中国科学院宁波材料技术与工程研究所)
【出 处】
:
中国科学院大学(中国科学院宁波材料技术与工程研究所)
论文部分内容阅读
通过外加作用力,将溶液相分散均一的具有一定形貌和粒径的纳米金颗粒(Au NPs)可控组装成纳米金二维单层膜,在传感检测、智能仿生、柔性器件等方面有非常广阔的应用前景。但是,目前构建纳米金二维膜的方法,尤其是界面自组装的方法中,通过简单快速的方法构建宏观大面积的,间距及纳米粒子定向可控的纳米金二维膜仍然是个难题。为了解决以上问题,实现纳米金二维膜构建方法的优化的同时扩展其多方面的应用,本文通过对纳米金二维膜功能化,主要完成了以下几个工作:(1)水油界面自组装构建宏观大面积的定向排列的纳米金棒二维膜并用于光热防伪。虽然通过固体基底上的不对称修饰可实现纳米金棒(Au NRs)的取向排列,但是基底的存在不仅使得Au NRs的组装面积非常局限,而且也极大地限制了Au NRs二维膜的应用。为了克服固体基底在组装过程中的局限性,首先对Au NRs进行高分子不对称修饰,在水油界面将精确不对称修饰的Au NRs定向组装成宏观大面积的二维单层膜,并且,通过控制Au NRs表面分子修饰配比及用量,实现了纳米金棒可控的取向组装。进一步地,优化的Au NRs组装体能够显现出优异的光热转换能力,在较低的能量密度下可实现较高的温度转变,从而在光热防伪方面有较大的应用潜力。(2)强疏水力诱导宏观大面积自愈合纳米金二维膜的超快速构建。传统水油界面自组装无法快速成膜、易受外界干扰、组装形貌及粒子间距不可控、易破碎、Au NPs组装利用率低。在此,通过引入具有超强疏水力的分子诱导Au NPs成膜,从热力学和动力学双重角度最大程度地增加Au NPs成膜驱动力。该方法成膜速度极快,Au NPs利用率高,成膜面积大,而且形成的是均一的粒子密集排列的单层膜结构。并且,由于所用的全氟分子本身超低的表面能,使得此种方法获得的纳米金二维膜具备一些特殊的性能,包括较高的Au NPs利用率,极易转移和转印,并且可以普适到其他形貌的贵金属或非贵金属纳米及微米粒子的成膜。更为主要的是,该Au NPs二维膜具有“自愈合”性能。该自愈合的Au NPs二维膜可以实现物质的吸附,比如铁离子(Fe3+)。在极少的Au NPs用量下就可实现较高浓度的Fe3+吸附。不仅如此,该Au NPs二维膜还可实现循环多次自愈合吸附性能并保持良好的膜稳定性。(3)气-液界面自组装获得宏观大面积超晶格Au NPs二维膜用于自清洁的超灵敏检测基底。超晶格二维膜的制备一直是目前研究的热点和难题,传统的Au NPs超晶格二维膜不仅成膜条件苛刻,超晶格基底依赖性强,更主要的是无法将超晶格Au NPs二维膜的性质利用起来。在此,通过超低表面能的全氟分子来诱导Au NPs的超晶格自组装同时赋予该超晶格二维膜增强的等离子耦合性能,进一步将该超晶格二维膜用于自清洁表面增强拉曼(SERS)检测中。
其他文献
语文是研究语言与文字的综合课程,也是人们展开思想交流的重要工具。中学语文教学对于学生综合素质提升意义非常,新课程标准主张在教学过程中以自主、探究、合作的方式展开教学,同时要求构建出一种平等、民主且和谐的新型师生关系。基于师生互动的中学语文教学,能够真正让师生有效互动与交流,是新课改下的重要教学理念,同时也是优化中学语文教学途径的重要举措。为此,本文也就基于师生互动下的中学语文教学途径展开了研究。
为开发具有新功能的小分子化合物和材料,化学家们采用了各种各样的策略来优化它们的结构。其中非常有效的一个手段就是用碳-氟键代替碳-氢键。这种策略已经广泛应用到药物、农用化学品、材料及光学器件的开发上。目前,市场上的药品及农用化学品中有大约25%含有氟元素。氟代的材料拥有独特的性质,并被广泛应用到各个领域中,如聚四氟乙烯材料。氟原子元素在诊断中也有很好的应用,如18F-PET,MRI,19F-NMR等
目的:采用网络药理学方法筛选桂枝甘草汤药物的活性成分,预测其治疗室性早搏的潜在作用靶标和信号通路,进一步探究其机制如何产生。方法:通过充分利用中国中药管理系统的利用药理学信息数据库和利用药理学数据分析系统平台(tcmsp)软件进行筛选分析,得到中药桂枝和甘草中相关药物的活性化学成分以及其他相关药物靶标,并利用GeneCards数据库和OMIM数据库筛选室性期前收缩的相关靶标,获得药物治疗室性早搏的
水库边坡失稳造成的滑坡涌浪问题,在数值计算上可看成是一个主要由岩土滑坡体、水流体以及大气组成的多相流问题。该问题的数值计算极其复杂。随着这方面相关理论和应用工作的发展,现有分析方法的局限性越来越突出,迫切需要开发新的替代方法来解决这类流固耦合作用计算困难的问题。本文在对滑坡涌浪问题的相关研究进展及成果进行调研与分析后,构建了统一粒子法的流固耦合模型及算法,实现了流体、固体在同一框架下的耦合处理,最
随着半导体芯片特征尺寸的减小和电子元器件封装密度的提高,电子产品内部单位体积上的功率密度也急剧上升。如果电子产品工作时产生的热量无法及时排出,聚集到一定程度会引起电子元器件内部温度的严重上升,极大的影响电子产品的工作效率和寿命。高效的热管理设计是解决这一问题的关键,其核心环节即是填充于热源(Heater)和热沉(Heat sink)之间作为两者热量传递桥梁的热界面材料(Thermal interf
本论文针对铜基石墨烯薄膜表面存在的缺陷严重制约其防护寿命的瓶颈问题,研究石墨烯缺陷引发电偶腐蚀机制以及有机分子和碳基薄膜在石墨烯表面的生长机制,揭示石墨烯缺陷修复机制及长效腐蚀防护机理。采用化学气相沉积技术,通过控制生长过程参数获得不同层数的石墨烯,研究缺陷在石墨烯上的存在状态以及缺陷诱导和促进电偶腐蚀的机制。采用分子自组装技术将有机分子选择性的吸附在石墨烯的缺陷位置,有机分子通过化学键精准接枝在
石墨烯具有出类拔萃的电学性能、热学性能、机械性能等,在各个领域体现出良好的应用前景。目前石墨烯以纳米片形式被广泛应用,其主要应用形式分为两类:一类是以石墨烯纳米片分散形式进行应用,例如高分子复合材料的填料、导电油墨、涂料的填料等;另一类是以石墨烯纳米片的组装体来进行应用,例如薄膜、气凝胶等。上述这两种应用形式都大量涉及石墨烯与液相的表界面行为。石墨烯纳米片分散形式的应用主要关注石墨烯与液相环境表面
受人体手臂结构的启发,本课题设计了一种模块化绳索驱动仿生机器人臂,该机器人臂由三自由度肩关节、单自由度肘关节和三自由度腕关节依次串联而成,其中每一个关节模块都是一种绳索驱动并联机构,动平台和定平台之间通过被动关节相连,并采用轻质绳索代替刚性杆件传递驱动力,绳索的驱动单元都安装在机器人臂底座上,因此,模块化绳索驱动仿生机器人臂具有质量轻、转动惯量小、载重/自重比高、工作空间大、刚度可变、安全性高等特
Mn+1AXn(MAX)相是一类具有六方晶体结构(P63 mm/c)的三元纳米层状碳/氮化物,兼具金属和陶瓷性质,在大功率电接触、摩擦磨损和事故容错核燃料包壳材料等领域作为结构材料有着广阔的应用前景。自上世纪60年代以来,MAX相A位元素仍局限在主族元素(如Al,Si,Sn等),如何将MAX相的A位元素从传统定义的主族元素拓展到电子轨道结构最外层富含d电子的后过渡族金属(如Mn,Fe,Co,Ni,
目前,癌症已经成为威胁人类生命健康的一大主要因素。其死亡率更是仅次于心脑血管病位于死亡率第二名。据统计,我国每年有220万新发病例及160万死亡病例,且在近20年来以20%的速度攀升。虽然随着医疗技术的快速发展,癌症的治疗手段已经有了长足的发展,但是由于癌症存在发病机理复杂且个性化程度高的问题而导致其难以治疗。因此寻找一种高效、安全的诊疗方法是癌症诊疗领域的难点之一。随着纳米技术的迅猛发展,其在生