【摘 要】
:
当前高动态车联场景面临着多普勒频偏扩展效应对通信系统的性能造成严重影响的问题,本文从多频段性能差异、车联业务需求差异和历史频偏数据辅助三个维度出发,提出了一种新型的联合多普勒频偏估计与补偿算法,有效地实现了多普勒频偏估计与补偿,提升通信链路的性能及可靠性,从而保障了高动态车联场景下所承载业务的有效进行。本文的主要贡献包括两部分:(1)建立了基于数据辅助的多普勒频偏联合估计与补偿方法。针对高动态车联
论文部分内容阅读
当前高动态车联场景面临着多普勒频偏扩展效应对通信系统的性能造成严重影响的问题,本文从多频段性能差异、车联业务需求差异和历史频偏数据辅助三个维度出发,提出了一种新型的联合多普勒频偏估计与补偿算法,有效地实现了多普勒频偏估计与补偿,提升通信链路的性能及可靠性,从而保障了高动态车联场景下所承载业务的有效进行。本文的主要贡献包括两部分:(1)建立了基于数据辅助的多普勒频偏联合估计与补偿方法。针对高动态车联场景的高速运动导致信号检测性能受多普勒频偏影响严重的问题,设计了基于数据辅助的新型多普勒频偏联合估计和补偿方法。利用辅助训练序列的随机相关组合进行最大似然估计,提升估计算法的性能,同时采用固定序列进行多重估计,实现多普勒频偏估计算法的准确性和复杂度的平衡。进一步,通过对估计历史数据结果的学习来自适应调整频偏估计和补偿的频次,其次在多重补偿的基础上,提出了基于业务需求差异分析的实时算法精度调整。(2)搭建了面向高动态车联场景的多普勒频偏补偿关键技术软硬件验证平台。其中,设计并搭建了面向高动态车联场景的传输链路级仿真平台,并基于通用软件无线电外设(Universal Software Radio Peripheral,USRP)和 EB Propsim 信道仿真仪设备,搭建了面向高动态车联环境的多普勒频偏估计和补偿关键技术软硬件验证平台,利用信道仿真仪对高动态车联信道模型进行建模,通过信道仿真仪模拟归一化多普勒频偏为0.1~0.25的随机值来映射高动态无线环境。实验结果验证了多普勒频偏估计和补偿技术的准确性和有效性,使得系统误比特率(Bit Error Ratio,BER)由0.3降低到到0.045,性能大幅优化;系统吞吐量从19.84Mbps提升到26.75Mbps,提高了 34.82%。
其他文献
随着5G技术在全世界正式商用,新型媒体业务层出不穷,移动设备流量的增长比4G时代更加快速,这对网络能力尤其是无线侧的承载能力提出了更高的要求。5G邻域网络是指与同一空间中除5G外的其它网络系统,尤指非3GPP标准的网络。如WLAN、Bluetooth、ZigBee等。这类网络系统多在非授权频段使用,其较低的成本、方便的部署赢得消费者的青睐。如何利用好这些网络,将其与5G网络有机地、动态地、高效地整
卫星通信系统与地面通信系统的融合成为第六代移动通信技术的研究热点之一。与中高轨卫星相比,低轨卫星凭借其技术成熟、延时低、覆盖广、成本低等特点成为地面通信系统的有效拓展。当前关于低轨卫星通信系统的研究重点在于将5G移动通信关键技术的深度融合,基于5G的关键技术,赋能卫星通信。随机接入作为5G关键技术之一,是建立上行链路,实现数据传输的基础。与地面蜂窝通信系统相比,低轨卫星通信系统具有传输时延高、频偏
随着5G进入商用阶段,虚拟现实、增强现实、车联网和全息影像等新兴应用高速发展,用户对内容服务的需求不断增加。面对移动数据流量的急剧增长,雾无线接入网(Fog Radio Access Network,F-RAN)中采用人工智能和边缘缓存技术提升网络服务质量。然而,人工智能技术带来的数据隐私问题日趋严重。因此,为解决F-RAN中采用人工智能对缓存资源进行优化时面临的数据隐私问题,本论文提出了一种F-
无线网状网络(Wireless Mesh Network,WMN)是以无线通信为基础组建的Mesh网络,其在伸缩性、鲁棒性、吞吐量等方面相比于传统的WLAN网络拥有多种优势。由于当前接入网络的无线终端数目的增多,如何有效部署WMN网络开始成为人们的研究热点。无线通信的信道和功率是两大重要资源,如何有效利用这两大资源是部署WMN必须解决的难题,为了解决普通WMN信道利用率低的问题,多无线电多信道无线
图像分辨率是对图像质量好坏、清晰度高低进行评价的一个重要指标,在获取图像过程中,会由于众多客观因素的影响导致图像分辨率较低,例如:硬件仪器成像能力有限以及环境因素等。超分辨率图像重建算法旨在利用现有的低分辨率图像获得对应的高分辨率图像。如何提高图像可以传递的信息量进而获取高分辨率的图像以满足实际需要将具有重要研究价值和意义。本文对基于生成对抗网络的图像重建算法进行了改进,使得重建图像的内容充实、视
通信技术演进到第五代移动通信(the Fifth Generation of Mobile Communication,5G)时代,能够实现万物的互联互通,而V2X(Vehicle to Everything,车辆到一切事物)技术作为万物互联的接入点成为了目前研究的热点。本文主要对5G新空口车联网(New Radio Vehicle to Everything,NR-V2X)技术的直连链路(Sid
无人机(Unmanned Aerial Vehicle,UAV)搭载空中基站与传统的固定基站相比,具有制造成本低、操作灵活等优势。通过引入终端直通(Device-to-Device,D2D)技术,可以有效扩展无人机通信网络无线覆盖范围。然而,无人机的高移动性导致网络拓扑的频繁变化,因此对底层D2D网络带来了更严重的干扰。为了提升面向D2D用户的无人机网络性能,本文针对不同的网络模型,提出了联合优化
作为计算机视觉领域的重要研究分支,基于人脸检测和识别的身份验证技术近年来取得了长足的进步,在智慧城市、交通监管和安防监控等诸多领域实现了大规模商业化普及,为经济社会的稳定和发展提供了重要保障。然而在非限定性人员管控场景下,人脸的局部遮挡会造成图像原本的结构性特征丢失,大幅影响人脸识别精度。此外,随着智能终端设备的广泛应用和算力提升,基于移动端完成人员管控的需求大大增加,但当前主流的深度神经网络模型
近年来,伴随着互联网技术的快速发展,视频监控系统得到了越来越广泛的应用。在视频监控系统的运营过程中,视频不可避免会出现一些质量问题,比如模糊和偏色。这些问题会极大影响监控的有效性,因此视频图像质量的自动诊断变得越来越重要。在这个背景下,本文针对视频质量检测中图像模糊和偏色的问题进行研究,在研究的基础上设计并实现了一个视频质量检测系统。本文的主要研究内容如下:在图像模糊检测方面,针对运动模糊图像和失
在如今21世纪,无线通信已经与我们的社会发展与日常生活密不可分。而由于无线通信本身所具有的开放性的特点,我们周围的电磁环境是非常复杂且多变的,也因此对无线信号的识别技术一直是人们研究的热点问题。随着人工智能技术的兴起与高速发展,信号的识别识别技术也由原先需要依靠技术人员的专业能力来判断转变为由计算机自己完成对目标信号的识别,节省了大量人力,也极大的提高了识别速度与准确度。本文的主要工作及创新点如下