【摘 要】
:
近年来,伴随着互联网技术的快速发展,视频监控系统得到了越来越广泛的应用。在视频监控系统的运营过程中,视频不可避免会出现一些质量问题,比如模糊和偏色。这些问题会极大影响监控的有效性,因此视频图像质量的自动诊断变得越来越重要。在这个背景下,本文针对视频质量检测中图像模糊和偏色的问题进行研究,在研究的基础上设计并实现了一个视频质量检测系统。本文的主要研究内容如下:在图像模糊检测方面,针对运动模糊图像和失
论文部分内容阅读
近年来,伴随着互联网技术的快速发展,视频监控系统得到了越来越广泛的应用。在视频监控系统的运营过程中,视频不可避免会出现一些质量问题,比如模糊和偏色。这些问题会极大影响监控的有效性,因此视频图像质量的自动诊断变得越来越重要。在这个背景下,本文针对视频质量检测中图像模糊和偏色的问题进行研究,在研究的基础上设计并实现了一个视频质量检测系统。本文的主要研究内容如下:在图像模糊检测方面,针对运动模糊图像和失焦模糊图像检测效果差异性的问题,提出了一种基于决策树的模糊检测算法。该算法选取图像中的纹理信息、DCT(Discrete Cosine Transform)高频系数和边缘梯度作为特征指标,将模糊图像的检测问题转换为图像的分类问题。实验结果表明,在图像分类任务中,与其他对比方法相比,本文提出的算法有更高的准确率和召回率。在图像偏色检测方面,针对偏色图像在轻微偏色和颜色单一的场景下检测效果差的问题,提出了一种基于SVM(Support Vector Machine)和决策树的偏色检测算法。该算法使用多尺度技术对图像进行处理,充分利用图像的局部和全局信息,同时利用组合分类器弥补单一 SVM分类模型在特征选取方面的不足。实验结果表明,与其他算法相比,本文提出的算法在图像分类任务中有更高的准确率,同时还缩短了 19%的检测时间。以这些图像模糊和偏侧的检测算法为基础,设计并实现了一个视频质量检测系统。系统的核心模块包括登录注册、视频上传、视频播放、数据处理、模糊检测、偏色检测、系统管理、信息统计、检测结果展示等模块。系统的客户端采用VUE框架,服务端使用SpringBoot框架,图像的异常检测算法采用的是OPENCV和SKLEARN开源库。测试结果表明该系统可以有效地实现视频的模糊检测和偏色检测。
其他文献
随着通信技术的发展,无人机基站以其灵活性和独有的信道特性受到广泛关注。对单无人机部署位置的研究当前较为成熟,但以信道传输总速率最大化为目标求解多无人机部署位置的问题尚待探索。现有研究已逐渐从静止用户转向比较复杂的运动用户,该场景下无人机基站需随用户的运动实时调整才能提供良好的服务。本文主要研究用户运动情景下的多无人机快速部署问题,具体研究内容如下:(1)无人机无线网络快速部署策略研究。本文针对快速
电磁泄漏信号是电子系统正常运行期间,由内部电流的变化所产生的电磁辐射信号。在正常情况下,电阻、电源、计算芯片等电子元件都会产生电磁辐射并引起电磁泄漏。本文针对嵌入式设备产生的电磁泄漏信号进行分类识别,对于嵌入式设备的安全性评估有重要意义。本文主要有如下四个创新点:第一,搭建了基于单片机存储、SIMECK32/64进行加密过程的电磁泄漏信号自动采集平台和基于Jetson Nano的神经网络电磁泄漏信
随着5G技术在全世界正式商用,新型媒体业务层出不穷,移动设备流量的增长比4G时代更加快速,这对网络能力尤其是无线侧的承载能力提出了更高的要求。5G邻域网络是指与同一空间中除5G外的其它网络系统,尤指非3GPP标准的网络。如WLAN、Bluetooth、ZigBee等。这类网络系统多在非授权频段使用,其较低的成本、方便的部署赢得消费者的青睐。如何利用好这些网络,将其与5G网络有机地、动态地、高效地整
卫星通信系统与地面通信系统的融合成为第六代移动通信技术的研究热点之一。与中高轨卫星相比,低轨卫星凭借其技术成熟、延时低、覆盖广、成本低等特点成为地面通信系统的有效拓展。当前关于低轨卫星通信系统的研究重点在于将5G移动通信关键技术的深度融合,基于5G的关键技术,赋能卫星通信。随机接入作为5G关键技术之一,是建立上行链路,实现数据传输的基础。与地面蜂窝通信系统相比,低轨卫星通信系统具有传输时延高、频偏
随着5G进入商用阶段,虚拟现实、增强现实、车联网和全息影像等新兴应用高速发展,用户对内容服务的需求不断增加。面对移动数据流量的急剧增长,雾无线接入网(Fog Radio Access Network,F-RAN)中采用人工智能和边缘缓存技术提升网络服务质量。然而,人工智能技术带来的数据隐私问题日趋严重。因此,为解决F-RAN中采用人工智能对缓存资源进行优化时面临的数据隐私问题,本论文提出了一种F-
无线网状网络(Wireless Mesh Network,WMN)是以无线通信为基础组建的Mesh网络,其在伸缩性、鲁棒性、吞吐量等方面相比于传统的WLAN网络拥有多种优势。由于当前接入网络的无线终端数目的增多,如何有效部署WMN网络开始成为人们的研究热点。无线通信的信道和功率是两大重要资源,如何有效利用这两大资源是部署WMN必须解决的难题,为了解决普通WMN信道利用率低的问题,多无线电多信道无线
图像分辨率是对图像质量好坏、清晰度高低进行评价的一个重要指标,在获取图像过程中,会由于众多客观因素的影响导致图像分辨率较低,例如:硬件仪器成像能力有限以及环境因素等。超分辨率图像重建算法旨在利用现有的低分辨率图像获得对应的高分辨率图像。如何提高图像可以传递的信息量进而获取高分辨率的图像以满足实际需要将具有重要研究价值和意义。本文对基于生成对抗网络的图像重建算法进行了改进,使得重建图像的内容充实、视
通信技术演进到第五代移动通信(the Fifth Generation of Mobile Communication,5G)时代,能够实现万物的互联互通,而V2X(Vehicle to Everything,车辆到一切事物)技术作为万物互联的接入点成为了目前研究的热点。本文主要对5G新空口车联网(New Radio Vehicle to Everything,NR-V2X)技术的直连链路(Sid
无人机(Unmanned Aerial Vehicle,UAV)搭载空中基站与传统的固定基站相比,具有制造成本低、操作灵活等优势。通过引入终端直通(Device-to-Device,D2D)技术,可以有效扩展无人机通信网络无线覆盖范围。然而,无人机的高移动性导致网络拓扑的频繁变化,因此对底层D2D网络带来了更严重的干扰。为了提升面向D2D用户的无人机网络性能,本文针对不同的网络模型,提出了联合优化
作为计算机视觉领域的重要研究分支,基于人脸检测和识别的身份验证技术近年来取得了长足的进步,在智慧城市、交通监管和安防监控等诸多领域实现了大规模商业化普及,为经济社会的稳定和发展提供了重要保障。然而在非限定性人员管控场景下,人脸的局部遮挡会造成图像原本的结构性特征丢失,大幅影响人脸识别精度。此外,随着智能终端设备的广泛应用和算力提升,基于移动端完成人员管控的需求大大增加,但当前主流的深度神经网络模型