论文部分内容阅读
针对我国锰矿品位低,杂质多,处理流程长等特点,本文研究提出一套高效、低成本的低品位氧化锰矿制备电解锰的工艺,并对工艺过程进行优化。流程包括采用亚硫酸钠做电位调节剂还原浸出,黄铁矾法除铁,硫化钠净化除杂一锅法制备硫酸锰电解液,在MnSO4-(NH4)2SO4-NH3-H2O体系中使用双膜三室法电解制备电解锰。通过浸出基础热力学数据计算,绘制Mn-H2O系、Fe-H2O系和H2O2-H2O系E-pH图,在25℃,101.325KPa,[Mn]=1mol/L,[Fe]=1mol/L下,当pH<1.61,0.77<E<(1.228-0.1182pH)时,Mn2+和Fe3+共同存在,得出能保证浸出和除铁的溶液电位调节剂有两类。分别选择过氧化氢和亚硫酸钠作为代表进行浸出和除铁实验,优化过氧化氢作为电位调节剂时工艺条件:反应温度为90℃,硫酸用量为100g/L,过氧化氢用量为0.5mol/L,浸出反应时间为1.75h。使用氨水调浆,终点pH值为2.5,沉淀反应1.25h,锰、铁、硅的浸出率分别为97.8%、0.02%、1.2%。在实验基础上对基础热力学数据进行修正,Mn2+和Fe3+共同存在区域变化为:在90℃,101.325KPa,[Mn]=0.4mol/L,[Fe]=0.06mol/L下,当pH<1.78,0.858<E<(1.361-0.1477pH)。在修正后数据基础上对亚硫酸钠作为电位调节剂的工艺条件进行优化:反应温度为90℃,硫酸用量为110g/L,亚硫酸钠用量为0.43mol/L,浸出反应时间为1.67h。使用氨水调浆,终点pH值为2.5,锰、铁、硅的浸出率分别为98%、0.03%、1.1%。经过两者的用量和反应能力最终选择亚硫酸钠作为还原剂。对浸出液的净化过程进行研究,结果表明在反应终点pH=4.5时,除杂效果最好。整合浸出,除铁和除其他杂质金属离子过程,采用废电解液为浸出剂,多段浸出,多段逆流洗涤,保证净化液的锰离子浓度,研究使用一锅法缩短流程,解决后续除杂难过滤等问题。通过MnSO4-(NH4)2SO4-H2O系综合平衡电势E-pH图和MnSO4-(NH4)2SO4-NH3-H2O系综合平衡电势E-pH图对比以及溶液离子平衡计算,确定了工艺条件为:硫酸铵的加入量120-130g/L,电解温度为35℃,电流密度为350A/m2,锰电解过程阴极电流效率可达到77%。改进电解过程,使用阴阳离子交换膜作为电解隔膜的双膜三室电解法制备电解锰,平均阴极电流效率可达80%。