论文部分内容阅读
随着我国航天领域小卫星的逐渐开发与应用,研制高性能、低成本的全物理小卫星位置和姿态仿真系统已成为航天仿真技术的发展要求。而全物理仿真是通过多自由度气浮台模拟卫星在太空的运动状态,五自由度卫星仿真气浮实验台是一个能在地面上实现微重力、低摩擦环境的新方案。五自由度气浮台由位置平台和姿态平台两部分组成。本文主要着眼于姿态平台姿态控制系统的研究,气浮台姿态控制系统包括姿态的确定和姿态的控制两部分,姿态的确定是研究气浮台对于某个基准的姿态定位,而姿态控制是指气浮台在某个规定的预先确定的方向上定向的过程。本文在基于已有的姿态确定系统的基础上主要对姿态的控制部分进行分析和设计。首先,针对五自由度气浮台姿态平台进行动力学建模,建立了气浮台姿态控制系统的数学模型。其中包括气浮台动力学模型、执行机构飞轮电机模型。还针对三正交零动量飞轮设计了单通道控制回路,对三正交一斜装飞轮控制系统进行描述并给出相应的方向矩阵和动量分配矩阵。其次,设计了一种典型的Mamdani型的模糊控制对经典PID系数进行整定的模糊自适应PID。利用MATLAB对姿态控制动力学模型仿真,根据仿真结果分析得出模糊自适应PID作为一种人工智能控制有着可以和PID相比拟的控制精度,而且响应速度快,对参数可变的被控对象有着较强的鲁棒性。最后,选择高性能的基于PC104总线标准的CPU处理板设计基于VxWorks嵌入式实时系统的数字控制器,完成硬件的搭建、软件的配置、功能齐全的上位机控制程序和友好的上位机操作界面设计以及上下位机通讯,并编写将模糊自适应PID控制算法在PC104上实现的应用程序。