环雾状流涡街测量特性与稳定性研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:luo_yu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
湿气和湿蒸汽两相流广泛存在于石油、天然气、发电、航空和航天等领域,其中环雾状流是最重要的两相流型。涡街流量计被广泛应用于湿气和湿蒸汽两相流的流量测量。以能源为主的应用市场迫切需要提高湿气和湿蒸汽的计量精度和可靠性,拓展仪表测量范围。本文以提高涡街流量计在环雾状流条件下的计量水平为目标,以其机理参数——斯特劳哈尔数St为研究对象,围绕两相涡街过读与稳定性进行研究。主要研究工作和所形成的成果及结论如下:
  1.研究了旋涡脱落中液滴-涡双向耦合机制。提炼了无量纲液滴尺度参数:液滴质量加载量?p和斯托克斯数StL。基于DPM粒子追踪模型,分析了液滴在涡中的输运特性及液滴对涡街尾迹的影响。论证了参数φp和StL作为主要尺度参数表征载颗粒尾迹中液滴-涡相互作用动力学特性的合理性。发现参数φp主要影响旋涡结构规则性,参数StL主要影响颗粒在涡中的响应和分散特性。基于欧拉双流体数值模型,验证了参数φp和StL表征涡街频率特性的有效性,并得到了φp和StL对特劳哈尔数St的影响规律。
  2.分析了两相涡街稳定性及尾迹失稳机制。基于绝对/对流不稳定理论研究了两相流尾迹失稳机制。考虑流体粘性,推导了载颗粒两相Orr-Sommerfeld稳定性方程。提取了不同流向站位的时均速度剖面,分析了局部流动稳定性。提炼了绝对/对流不稳定区分布,并从流动的整体稳定性解释了涡街尾迹失稳机制。为进行实验研究,设计了基于雾化混合的环雾状流实验装置,并引入液膜分离技术和图像粒度测量技术进行液滴流动参数的测量。基于连续小波(CWT)脊方法从信号角度研究了涡街稳定性,提炼了涡街失稳特性的信号表征:低频调制作用增强、信号品质因子下降、周期稳定性变差、流动整体波动减小。发现涡街稳定性主要受液滴含量影响。针对信号非平稳特性,提出了脊平均特征提取方法,提高了两相涡信号特征提取精度和可靠性。
  3.建立了环雾状流涡街频率特性过读模型,并提出了涡街过读补偿方法。针对涡街过读数据不一致问题,首次考虑了环雾状流液滴夹带率的差异,揭示了液滴含量对涡街频率特性的主影响作用。推导了两相无量纲涡量动力学方程,并结合涡量输运机制建立了两相斯特劳哈尔数理论模型。标定得到了不同湿气工况下的涡街频率特性,验证了过读理论模型OR=1+kφp/StL的有效性。预测精度达到±1.0%,为环雾状流涡街频率特性过读提供了统一的预测公式。针对涡街两相测量过读问题,提出了结合涡街幅值特性以及结合脊频率波动特性的过读补偿方法。分别对两相涡街幅值和脊频率归一化标准差进行建模,结合过读公式建立了涡街湿气测量模型。设计迭代算法对仪表预测过读进行补偿,实现了湿气中气相流量的准确预测。补偿前最大测量误差为9%,补偿后两相方法的气相测量误差均在±1.5%以内,有效提高了湿气中气相流量的测量精度。无需借助外部系统测量液相含量,提供了一种简单、经济、方便在线测量的涡街湿气测量方案。
  4.针对频率法量程比有限、压电元件存在共振风险问题,提出了基于非侵入压力波动的涡街互相关测量方法。设计了高频响瞬态压力传感系统,获得了不失真涡致压力波动信号。针对渡越时间估计中的多峰问题,提出了改进的涡对流速度估计算法。标定并分析了频率法和互相关法两种方法的测量性能。结果表明,在±2.0%精确度下,传统频率方法受仪表非线性影响量程比仅为3∶1。本文提出的互相关测量方法量程比达到8∶1,有效拓展了测量下限。然后,在不同湿气工况下对无量纲对流速度进行标定,建立了涡街互相关湿气测量模型。气相测量相对误差在±4%以内,平均绝对预测误差为1.39%,为涡街湿气计量提供了一种经济有效的测量方案,尤其在小口径测量中有很好的应用前景。
其他文献
现代科技的发展对于储能设备的要求日益提高,超级电容器作为主要的一类电化学储能器件,提高其能量密度仍是面临的挑战,需要开发新型的电极材料。沸石咪唑酯骨架材料(ZIF)是金属有机骨架材料的重要分支,其衍生碳材料具有高氮掺杂量和高比表面积等优点,是一种理想的超级电容器电极材料。然而ZIF衍生碳材料易团聚、孔分布不合理、结构易破坏和导电性差等缺点制约了其在超级电容器中的进一步应用。因此,开发新的ZIF衍生
学位
原子力显微镜(Atomic force microscope,AFM)被广泛应用于微纳表面形貌测量、微纳操纵和制造研究,已成为探索微纳米研究领域中不可缺少的重要工具。近年来,利用AFM进行微小力测量逐渐成为其应用的重要研究热点之一。由于AFM微悬臂梁刚度在微纳米尺度力学测试中具有重要作用,其准确性直接影响力学测量结果的可靠性。因此,开展微悬臂梁刚度标定研究对促进AFM工程应用具有重要的理论价值和实
学位
高能量密度和长寿命的锂/钾离子电池(LIBs/PIBs)是现代社会快速发展的必然要求,而新型、高性能LIBs/PIBs电极材料的设计和制备是提高其性能的关键。本论文以具有高储锂容量和长循环稳定性的硅氧碳前驱体陶瓷(SiOC)为研究对象,开展了高性能LIBs/PIBs负极材料的设计、制备与性能研究工作。针对SiOC基LIBs负极材料导电/离子能力差的问题,采用构建三维导电网络和纳米化(多孔)的设计思
学位
可再生能源的高效低成本和超低排放利用是当今能源转型的重点。生物质直燃有机朗肯循环(Organic Rankine cycle, ORC)耦合碳捕集技术可显著提高能源利用率,是控制全球温升低水平的关键技术之一。本文首先在有机朗肯循环的热动力学模型中考虑冷却水循环,研究冷却水耗功模型中的冷却水初温、水泵扬程和环境温度的影响规律,优化蒸发温度和冷凝温度;在单效溴化锂吸收式制冷循环模型中通过溴化锂溶液物性
锂离子电池近年来发展十分迅速,作为一款绿色储能介质,其最初广泛应用于各类移动式电子产品中,如数码相机、mp3/4、移动电话等。随着技术的发展和成熟,锂离子电池能量密度大、安全性高、污染小、重量轻的优势不断显现出来,后逐渐推广应用于电动汽车、卫星、绿色储能等重工业产品中。卫星上多数负载属于耗电型产品,卫星在轨期间会频繁交替出现在光照区和阴影区。在光照区,太阳能光伏板可以持续发电并供应负载工作,在阴影
学位
灵活高效的直流技术尤其是柔性直流技术,可实现电网柔性互联、大规模可再生能源的平滑接入,被认为是未来电力系统发展的一次重要革命。不同于交流网络,直流网络是一个“低惯量”系统,暂态过程很快,直流故障一旦发生,单个故障可能迅速波及整个直流系统而导致停电,而且发生故障时短路电流会急剧攀升,并在几毫秒内达到数十倍于额定电流的过流水平,令断路器开断容量和动作速度受到严峻考验,严重威胁换流器等重要一次设备的安全
学位
机械刻划加工技术可实现绿色、低成本、大面积和高精度加工,因此广泛应用于微结构加工制造中。微结构的加工质量直接决定其使用性能,因此如何制造出高质量的微结构成为了制造科学领域亟待解决的难题。采用金刚石尖劈刻划刀具机械刻划塑性金属材料时,成形槽面会产生与塑性流动区之间有明显分界的滞留区,而滞留区会影响成槽质量与刀具磨损情况,所以解决机械刻划材料的滞留问题已经成为提高成槽质量的关键。然而目前有关机械刻划滞
学位
使用准Z源逆变器驱动永磁同步电机有助于提升驱动系统的运行性能和可靠性,本文致力于探索应用于准Z源逆变器-永磁同步电机系统中的新型控制方法,实现准Z源逆变器独有特性和永磁同步电机工作机理的优势互补和融合。  本文首先建立准Z源逆变器和永磁同步电机的数学模型,并分析准Z源逆变器暂、稳态运行特征。继而,针对传统永磁同步电机系统变母线电压控制、单电流传感器控制和无位置传感器带速重投控制中的现存问题展开研究
近年来,城市景观湖泊作为具有防洪排涝、美化城市面貌、调节区域气候、改善空气质量和陶冶情操等多重功能的景观场所,成为世界各地城市规划和建设的热点。然而在人为活动和全球气候变暖的双重影响下,景观湖泊出现水质恶化、藻类爆发、生态系统稳定性降低、服务功能退化等现象。因此,城市景观湖泊的水环境治理和维护是学术研究及生态建设等方面的热点。  在景观湖泊中实施不同的生态措施是改善湖泊水质的常用方法,本文利用室外
学位
作为一种优化调度多种能源的供给系统,综合能源系统的应用将提升能源利用率,实现能源可持续发展,对综合能源系统的优化运行分析具有重要意义。考虑综合能源系统运行中源荷的不确定性,本文围绕综合能源系统的能流分析、运行优化和评价模型三个方面开展了相关研究,主要的研究工作如下:  1)在电-气综合能源系统的能流分析方面,提出了一种电-气综合能源系统的区间能流计算方法。首先,通过对天然气网的气流分析和对能源耦合