论文部分内容阅读
湿气和湿蒸汽两相流广泛存在于石油、天然气、发电、航空和航天等领域,其中环雾状流是最重要的两相流型。涡街流量计被广泛应用于湿气和湿蒸汽两相流的流量测量。以能源为主的应用市场迫切需要提高湿气和湿蒸汽的计量精度和可靠性,拓展仪表测量范围。本文以提高涡街流量计在环雾状流条件下的计量水平为目标,以其机理参数——斯特劳哈尔数St为研究对象,围绕两相涡街过读与稳定性进行研究。主要研究工作和所形成的成果及结论如下:
1.研究了旋涡脱落中液滴-涡双向耦合机制。提炼了无量纲液滴尺度参数:液滴质量加载量?p和斯托克斯数StL。基于DPM粒子追踪模型,分析了液滴在涡中的输运特性及液滴对涡街尾迹的影响。论证了参数φp和StL作为主要尺度参数表征载颗粒尾迹中液滴-涡相互作用动力学特性的合理性。发现参数φp主要影响旋涡结构规则性,参数StL主要影响颗粒在涡中的响应和分散特性。基于欧拉双流体数值模型,验证了参数φp和StL表征涡街频率特性的有效性,并得到了φp和StL对特劳哈尔数St的影响规律。
2.分析了两相涡街稳定性及尾迹失稳机制。基于绝对/对流不稳定理论研究了两相流尾迹失稳机制。考虑流体粘性,推导了载颗粒两相Orr-Sommerfeld稳定性方程。提取了不同流向站位的时均速度剖面,分析了局部流动稳定性。提炼了绝对/对流不稳定区分布,并从流动的整体稳定性解释了涡街尾迹失稳机制。为进行实验研究,设计了基于雾化混合的环雾状流实验装置,并引入液膜分离技术和图像粒度测量技术进行液滴流动参数的测量。基于连续小波(CWT)脊方法从信号角度研究了涡街稳定性,提炼了涡街失稳特性的信号表征:低频调制作用增强、信号品质因子下降、周期稳定性变差、流动整体波动减小。发现涡街稳定性主要受液滴含量影响。针对信号非平稳特性,提出了脊平均特征提取方法,提高了两相涡信号特征提取精度和可靠性。
3.建立了环雾状流涡街频率特性过读模型,并提出了涡街过读补偿方法。针对涡街过读数据不一致问题,首次考虑了环雾状流液滴夹带率的差异,揭示了液滴含量对涡街频率特性的主影响作用。推导了两相无量纲涡量动力学方程,并结合涡量输运机制建立了两相斯特劳哈尔数理论模型。标定得到了不同湿气工况下的涡街频率特性,验证了过读理论模型OR=1+kφp/StL的有效性。预测精度达到±1.0%,为环雾状流涡街频率特性过读提供了统一的预测公式。针对涡街两相测量过读问题,提出了结合涡街幅值特性以及结合脊频率波动特性的过读补偿方法。分别对两相涡街幅值和脊频率归一化标准差进行建模,结合过读公式建立了涡街湿气测量模型。设计迭代算法对仪表预测过读进行补偿,实现了湿气中气相流量的准确预测。补偿前最大测量误差为9%,补偿后两相方法的气相测量误差均在±1.5%以内,有效提高了湿气中气相流量的测量精度。无需借助外部系统测量液相含量,提供了一种简单、经济、方便在线测量的涡街湿气测量方案。
4.针对频率法量程比有限、压电元件存在共振风险问题,提出了基于非侵入压力波动的涡街互相关测量方法。设计了高频响瞬态压力传感系统,获得了不失真涡致压力波动信号。针对渡越时间估计中的多峰问题,提出了改进的涡对流速度估计算法。标定并分析了频率法和互相关法两种方法的测量性能。结果表明,在±2.0%精确度下,传统频率方法受仪表非线性影响量程比仅为3∶1。本文提出的互相关测量方法量程比达到8∶1,有效拓展了测量下限。然后,在不同湿气工况下对无量纲对流速度进行标定,建立了涡街互相关湿气测量模型。气相测量相对误差在±4%以内,平均绝对预测误差为1.39%,为涡街湿气计量提供了一种经济有效的测量方案,尤其在小口径测量中有很好的应用前景。
1.研究了旋涡脱落中液滴-涡双向耦合机制。提炼了无量纲液滴尺度参数:液滴质量加载量?p和斯托克斯数StL。基于DPM粒子追踪模型,分析了液滴在涡中的输运特性及液滴对涡街尾迹的影响。论证了参数φp和StL作为主要尺度参数表征载颗粒尾迹中液滴-涡相互作用动力学特性的合理性。发现参数φp主要影响旋涡结构规则性,参数StL主要影响颗粒在涡中的响应和分散特性。基于欧拉双流体数值模型,验证了参数φp和StL表征涡街频率特性的有效性,并得到了φp和StL对特劳哈尔数St的影响规律。
2.分析了两相涡街稳定性及尾迹失稳机制。基于绝对/对流不稳定理论研究了两相流尾迹失稳机制。考虑流体粘性,推导了载颗粒两相Orr-Sommerfeld稳定性方程。提取了不同流向站位的时均速度剖面,分析了局部流动稳定性。提炼了绝对/对流不稳定区分布,并从流动的整体稳定性解释了涡街尾迹失稳机制。为进行实验研究,设计了基于雾化混合的环雾状流实验装置,并引入液膜分离技术和图像粒度测量技术进行液滴流动参数的测量。基于连续小波(CWT)脊方法从信号角度研究了涡街稳定性,提炼了涡街失稳特性的信号表征:低频调制作用增强、信号品质因子下降、周期稳定性变差、流动整体波动减小。发现涡街稳定性主要受液滴含量影响。针对信号非平稳特性,提出了脊平均特征提取方法,提高了两相涡信号特征提取精度和可靠性。
3.建立了环雾状流涡街频率特性过读模型,并提出了涡街过读补偿方法。针对涡街过读数据不一致问题,首次考虑了环雾状流液滴夹带率的差异,揭示了液滴含量对涡街频率特性的主影响作用。推导了两相无量纲涡量动力学方程,并结合涡量输运机制建立了两相斯特劳哈尔数理论模型。标定得到了不同湿气工况下的涡街频率特性,验证了过读理论模型OR=1+kφp/StL的有效性。预测精度达到±1.0%,为环雾状流涡街频率特性过读提供了统一的预测公式。针对涡街两相测量过读问题,提出了结合涡街幅值特性以及结合脊频率波动特性的过读补偿方法。分别对两相涡街幅值和脊频率归一化标准差进行建模,结合过读公式建立了涡街湿气测量模型。设计迭代算法对仪表预测过读进行补偿,实现了湿气中气相流量的准确预测。补偿前最大测量误差为9%,补偿后两相方法的气相测量误差均在±1.5%以内,有效提高了湿气中气相流量的测量精度。无需借助外部系统测量液相含量,提供了一种简单、经济、方便在线测量的涡街湿气测量方案。
4.针对频率法量程比有限、压电元件存在共振风险问题,提出了基于非侵入压力波动的涡街互相关测量方法。设计了高频响瞬态压力传感系统,获得了不失真涡致压力波动信号。针对渡越时间估计中的多峰问题,提出了改进的涡对流速度估计算法。标定并分析了频率法和互相关法两种方法的测量性能。结果表明,在±2.0%精确度下,传统频率方法受仪表非线性影响量程比仅为3∶1。本文提出的互相关测量方法量程比达到8∶1,有效拓展了测量下限。然后,在不同湿气工况下对无量纲对流速度进行标定,建立了涡街互相关湿气测量模型。气相测量相对误差在±4%以内,平均绝对预测误差为1.39%,为涡街湿气计量提供了一种经济有效的测量方案,尤其在小口径测量中有很好的应用前景。