【摘 要】
:
随着社会进入信息时代,网络上巨大的信息量使得如今用户想要快速检索有效信息变得十分困难。自动文本摘要技术的出现解决了上述问题,但是传统的自动文本摘要技术受限于各种条件,导致难以生成准确率高、语句通顺并且简洁的好摘要。本文以上述问题为着手点,主要研究如何提升中文自动文本摘要的质量,具体研究内容如下:1.提出了基于语义理解的生成式文本摘要模型。传统中文文本摘要模型难以利用原始文本实体间的关联,导致生成的
论文部分内容阅读
随着社会进入信息时代,网络上巨大的信息量使得如今用户想要快速检索有效信息变得十分困难。自动文本摘要技术的出现解决了上述问题,但是传统的自动文本摘要技术受限于各种条件,导致难以生成准确率高、语句通顺并且简洁的好摘要。本文以上述问题为着手点,主要研究如何提升中文自动文本摘要的质量,具体研究内容如下:1.提出了基于语义理解的生成式文本摘要模型。传统中文文本摘要模型难以利用原始文本实体间的关联,导致生成的摘要准确率低。针对这个问题,本文利用原始中文文本构建文本语义理解图,增强了文本实体与其相关内容的关联性。同时为了使文本语义理解图有效地融入到模型中,我们改进了基于图注意力机制的文本语义理解图处理器。最后设计了融合文本和图信息的解码器,使得模型在生成摘要时融合文本编码信息与构建好的语义理解图信息,从而增强了模型生成摘要的准确性。我们在LCSTS数据集上进行对比实验,证实了模型的有效性。2.改进了基于语义理解的生成式文本摘要模型。针对模型生成摘要不够简洁的问题,我们从两个方面进行改进:一是改进了对比注意力机制,使得模型可以专注于原始文本中的重要信息,二是使用BERT作为模型的嵌入层,使模型可以有效地提取出原始文本中的特征。最后通过对比实验证实上述改进提高了生成摘要的简洁性。3.基于本文工作,设计并实现面向中文新闻领域的自动文本摘要系统。系统以本文提出的算法模型为核心,基于B/S架构,实现了前端展示层、通信层和自动摘要业务层,并且系统功能齐全、界面友好。本文经过对系统进行测试表明,该系统可以进行高质量的新闻摘要生成,满足实际应用需求。
其他文献
语义匹配技术备受关注,成为了当前自然语言处理技术应用领域热点话题之一,在问答系统以及信息检索等领域拥有着广泛的应用场景。目前,最热门的语义匹配模型为基于BERT的微调模型,但是大多数基于BERT模型的语义匹配技术由于采用统一注意力机制,对于句式复杂的文本语义信息抽取不够充分,导致对句子语义的理解存在偏差;同时,BERT模型规模庞大,计算量着实惊人,仅仅单个样本计算一次的开销动辄上百毫秒,在严格的延
随着科技水平的进步,视频数据在人们的日常生活中占据着越来越重要的地位。视频中存在着大量的文字信息,对其进行提取有助于视频内容的审核以及视频内容归纳分类。而视频文字检测识别技术能很好的满足对于大量视频内容提取与审核等方面的需求。相比于人工,借助视频文字检测识别技术进行视频内容提取与审核等工作,能够大幅提高效率并降低人力成本。本文基于深度学习技术,对视频文字检测算法和视频文字识别算法进行了研究,设计实
对于医学图像分割任务来说,传统的手工方法依托于医生的经验知识,不仅耗时耗力而且分割精度也没有保证。而随着计算机技术的发展,依托于深度学习的自动化分割方法在各个领域显示出了自己独特的优势,于是有了将深度学习与医学图像相结合来实现自动化医学图像分割的技术。在此背景之下,本文以深度学习为工具探索生成式对抗网络在脑肿瘤分割中的应用,主要工作如下:(1)从多尺度特征的角度出发实现了一个基于并行多尺度的生成对
在当前大数据时代,大量的医学影像没有得到有效利用。而在医疗、教育以及科研等领域却亟需大量经过标注的数据,因此需要一种技术对医学影像进行标注。然而使用手动标注的方法耗时耗力且需要医学专业人士才能完成,人工智能技术的兴起为医学影像的自动标注带来了福音。传统的自动标注方法仅仅使用了图像单一模态的数据,与图像数据紧密相关的诊断报告却未得到使用。因此本文提出了一种利用跨模态方法进行医学影像自动标注的技术,重
随着医学诊疗技术的发展以及胚胎发育理论体系的完善,体外受精-胚胎移植技术在经历了四代的更迭后已然成为不孕不育等相关疾病的首选治疗方案。其中,胚胎植入前的形态学诊断是成功移植的关键,原核期胚胎特征作为诊断的首要依据更是有着严格的定义。本文通过计算机视觉技术实现胚胎特征识别算法,相较于传统识别方案,算法能够自动且有效地分割胚胎主体区域并在原核期胚胎首要特征识别中获得接近医师的精度水平。最终给用户提供一
近年来,随着计算机视觉领域技术的不断突破与创新,在图像信息利用越来越多元化的背景下,视频预测成为当下深度学习研究的一个热点方向。视频预测技术以给出的图像信息为基础,通过构建一个可以精准建模视频内容和动态变化的内部表征模型预测未来视频帧,并应用于机器人、自动驾驶汽车和无人机提前决策等多个场景。针对于当前大多数视频预测技术对于时间信息提取的不足,导致连续帧出现的动作伪影以及动作模糊的难点,本文基于现实
近来年,随着人工智能技术的落地应用,人们的学习和生活方式发生了极大的变化。在教育行业,自然语言理解、知识图谱和知识推理等技术更是对其产生了深远的影响,基于知识图谱的推理自然受到了越来越多的关注和研究。然而在推理过程中,需要考虑不同的策略。本文正是基于上述背景,研究和实现了图推理中的组合分支技术,并将其应用到了初等数学求解中,主要包括如下内容:1、研究和实现了组合分支技术中的分层策略。本文最终划分了
面对信息爆炸的时代,用于信息搜索的智能问答技术发展迅速。用户通过问答系统,从海量信息中检索出准确信息。传统问答算法利用浅层语义,获得简单问题的答案,但无法获得更深的语义层次,难以给出更加准确的信息。以知识图谱为基础的问答系统,结合知识图谱中的语义信息和知识结构,能够检索出更加准确的答案。但是,目前的研究多是在一个理想的状态下进行研究的,即用户所输入的问题,能够在知识图谱中通过推理全部得到答案。在实
随着人工智能的飞速发展,为专注于对计算机推理能力的挖掘,微软推出数学图表类数据集Figure QA,旨在用简单的图形图表组合让计算机完成数学推理任务。而对于计算机而言,要完成对图像信息的整合并结合文字信息进行推理,首先需要完成的就是对图片信息的提取,也就是对图片进行目标检测。因此本文的主要研究内容为图像问答过程中所涉及到的的目标检测过程。对于数学图表类图像而言,与主流目标检测模型中通常采用的真实场
得益于分布式、安全和可追溯的特点,区块链技术自诞生以来就被广泛应用于各类应用场景。但是,与已建立的解决方案(例如分布式数据库系统)相比,区块链系统的吞吐率仍不理想,已经成为阻碍区块链发展的重要挑战之一。作为一种有准入机制的区块链,联盟链相比于公链增加了可监管特性,在交易处理和交易确认延迟方面相较于公链有着显著提升。但当前联盟链使用的共识算法只支持单节点串行出块,如联盟链代表Hyperledger