论文部分内容阅读
铜铝层状复合材料替代纯铜作为导电体可以显著降低材料成本,减轻输电系统自重。但是,其在重要装备或工程上使用时,由于服役过程中由腐蚀引起的性能变化和寿命问题还一直没有得到系统的研究,直接制约了应用范围的扩大。作为导体,腐蚀是导致其性能变化和失效的主要原因。由于铜铝层状复合材料的结构特点,使其腐蚀行为与纯铜、纯铝具有较大差异。然而,这方面的研究工作开展还不够深入,特别腐蚀对材料服役过程中性能的影响评价和寿命预测更是缺失。为此,本文针对导电用铜铝层状复合材料开展了研究工作,通过通电服役状态下铜铝复合材料的加速腐蚀实验,系统研究了交流与直流电流两种服役状态下的腐蚀行为,探讨了电流影响机制,构建了腐蚀条件下的使用寿命预测模型,并研究了提高铜铝复合板腐蚀寿命的防腐技术。电流对腐蚀的影响研究结果表明:铜铝复合板的腐蚀都发生在铝基体一侧,包括界面处的电偶腐蚀以及铝基体上的点蚀,腐蚀产物成分主要包括Al2O3、Al(OH)3及Al O(OH)。铜表面只发生氧的还原反应,为铝阳极提供充足的OH-离子,铜自身不发生腐蚀。电偶腐蚀导致了铜铝复合材料的耐蚀性低于其组成材料纯铝与纯铜。交流电流与直流电流对铜铝复合材料影响机制的共同点是电流对电化学参数影响引起的材料加速腐蚀与电流热效应引起的材料腐蚀减缓的协同作用,材料的腐蚀速率与腐蚀程度随着电流呈先增大后减小的趋势。区别是交流电流通过改变材料表面电解质液膜中Cl-离子的电迁移率影响了材料的腐蚀行为。Cl-离子电迁移率的越高,在材料表面的附着能力越差,腐蚀速率与腐蚀程度越低,但交流电流对腐蚀产物不产生影响。直流电流是通过引起液膜表面中离子的定向迁移,影响了材料的腐蚀行为。大量的Cl-离子与OH-离子在电流的作用下聚集在试样正极端表面,导致正极端试样表面的腐蚀程度比负极端更严重。同时,试样两极表面形成的腐蚀产物产生差异,正极端试样表面腐蚀产物主要成分为Al(OH)3,负极端试样表面腐蚀产物主要成分为Al O(OH)。直流电流的热效应比交流电流更加明显,导致相同电流值作用下,铜铝复合板腐蚀速率与腐蚀程度整体低于交流电流。通过5种盐雾浓度下0-7天的盐雾腐蚀失重,建立了极端条件下铜铝复合材料服役寿命的预测模型,并用3种盐雾浓度在50A交流通电状态下的盐雾腐蚀失重对模型的电流影响系数进行了修正。提出了采用腐蚀导致导体导电面积变化与稳定工作时温升关系,基于导电体标准,建立铜铝复合板电学失效判据,并利用热平衡与电热效应关系,构建了极端条件下铜铝复合板服役寿命预测的物理和数学模型。根据该模型,当由腐蚀引起的铜-铝-铜层状复合板(铜层厚度1mm,铝层厚度8mm)导电截面积减小达到37.5%时,将因电热效应增强导致温升超过标准规定,从而引起失效;在没有防护的条件下,在盐雾浓度为分别为0.2%(远海地区),0.4%(近海地区),1.5%(污染区)的服役环境中,该类铜铝复合板寿命分别为2539天,1311天,以及273天。但在非海洋性气候下(盐雾浓度0.05%),寿命可达13128天。以提高铜铝复合材料耐蚀性为目的,合成了无氟有机硅改性树脂疏水和氟硅共聚纳米Si O2粗糙表面超疏水防腐涂料,并以铜铝复合材料为基底制备了防腐涂层。两种涂层表面水滴接触角均值分别为103.7°和154.6°,腐蚀初期阶段均具备优异的防腐性能,缓蚀率高达98%以上。但改性树脂类涂层具有更长效的防腐作用,在5%浓度盐雾环境下铜铝复合板失重量出现增幅的时间分别为15d和3d。改性树脂基底为涂层提供了更好的机械稳定性与耐磨性,耐风沙侵蚀能力整体优于超疏水涂层的氟硅共聚物基底。此外,无氟化合成原料使改性树脂涂层同时具备了环保性。树脂疏水防腐涂层可将铜铝复合板导体在远近海区域的服役寿命提高至70年以上。超疏水防腐涂层虽然也具有较高的抗腐蚀性能,但涂层耐久性不如树脂涂层,应用受到限制。因此,改性树脂类防腐涂层更适合应用于铜铝层状复合材料服役状态下的腐蚀与防护。