【摘 要】
:
无机金属卤化物钙钛矿材料因其带隙可调、组分可控、光电性能和稳定性突出等优势受到研究者们的广泛关注。但是,以无机钙钛矿为光吸收层的钙钛矿太阳能电池仍然存在一些亟待解决的关键科学问题。因此,深入研究无机钙钛矿的微结构与光学特性、载流子传输动力学之间的规律,建立材料和器件结构与光电性能的构效关系,解决无机钙钛矿太阳能电池中相结构不稳定、各组分间能级失配和载流子复合率高等问题,对于获得高效稳定的无机钙钛矿
论文部分内容阅读
无机金属卤化物钙钛矿材料因其带隙可调、组分可控、光电性能和稳定性突出等优势受到研究者们的广泛关注。但是,以无机钙钛矿为光吸收层的钙钛矿太阳能电池仍然存在一些亟待解决的关键科学问题。因此,深入研究无机钙钛矿的微结构与光学特性、载流子传输动力学之间的规律,建立材料和器件结构与光电性能的构效关系,解决无机钙钛矿太阳能电池中相结构不稳定、各组分间能级失配和载流子复合率高等问题,对于获得高效稳定的无机钙钛矿太阳能电池至关重要。基于此,本论文从无机钙钛矿结构调控和器件优化两方面出发,通过精确调控无机钙钛矿的组分
其他文献
2011年在日本福岛核事故给全球的核电行业敲响了警钟,使得美国、法国、德国等国家的核安全理念发生了重大的转变,将核电厂严重事故、应急和外部灾害事件及叠加灾害分析提上了研究的重点。我国国家核安全局立即启动了针对福岛核事故的应急响应,开展了一系列在建核电厂安全大检查,并进一步提出开展包括外部灾害事件在内的全范围概率安全分析(PSA)工作。应该吸取福岛事故的经验教训,重新思考核安全。对于这种小概率但是后
发展可再生能源是解决能源危机和全球变暖的可行方案之一,为实现可再生能源的大规模应用,需要开发清洁、高效和低成本的储能装置。超级电容器由于具有功率密度高、循环寿命长和充放电速率快等优点,被看作是极具潜力的储能装置。然而,能量密度较低的缺点严重制约了超级电容器的商业应用。因此,如何提高超级电容器的能量密度,同时保留高功率密度和长循环寿命的特性,是目前亟待解决的关键问题。针对这一问题,本论文采用简单的方
一百多年以来,科技革命和工业化进程推动人类文明取得巨大进步,对能源的需求日益增加,致使人们掠夺式开发地球资源。目前,自然界的化石能源危机已引起世界各国的关注。科学家们探索了风能、水电、地热等多种可再生资源的开发利用。太阳能具有分布广泛、清洁、可再生等特点,一直以来都被认为是最具前景的新能源之一。太阳能的利用主要分为光热、光电、光催化和光生物等,其中研究时间较长、应用最为广泛的就是基于光电效应的太阳
化石能源的逐渐枯竭和环境污染的日趋严峻,迫使人们使用可再生能源来代替传统的化石能源。对于新的能源结构的调整,要求有先进的能源转换和储存器件给予支持。超级电容器作为新兴的储能器件,具有较大功率密度和较长的循环寿命,已经在众多领域得到应用。超级电容器按照电极材料的种类可以分为双电层电容器和赝电容电容器。赝电容电容器拥有比双电层电容器高的能量密度,被认为是最具潜力的能量储存器件。但因较差的导电性和较低的
染料敏化太阳能电池(DSSCs)是近年发展起来的新型太阳能电池之一,其被称为第三代太阳能电池。从近些年DSSCs的研究进展来看,一方面在于如何从材料的选择和设计的角度去提升电池的光电转化效率,另一方面则集中于器件的组装特性研究。在DSSCs关键性材料的开发上,主要着力于找到更为合适的电解质材料、光电极材料等,来提升电池的光电转化效率和稳定性等关键参数。目前DSSCs使用的电解质材料主要是液态的电解
作为一种新型电化学能量转换器件,质子交换膜燃料电池(PEMFC)由于具有能量转换效率高、排放低和燃料丰富的优点,在新能源应用领域受到广泛的研究和关注。质子交换膜燃料电池大范围应用的主要挑战是其动力学缓慢的阴极反应,或者说是铂催化剂的低活性,并且因此导致了阴极的高铂担载量和高成本。因此,开发高活性的燃料电池阴极催化剂,是实现PEMFC商业应用的关键。有序结构的Fe Pt合金纳米颗粒具有相比于商业化催
全固态电池中锆酸镧锂固态电解质具备四方相及立方相两种石榴石结构,其中立方相石榴石结构固态电解质具有较高的锂离子电导率。与有机液态电解质相比,固态电解质具有较宽的电化学窗口,长循环充放电性能与倍率循环充放电性能稳定。但是固态电解质的环境稳定性较差,并且其与正极材料、负极材料组装全固态电池的匹配性尚需进一步研究。针对以上问题,本文首先对Li_7La_3Zr_2O_(12)固态电解质粉体及陶瓷的制备工艺
定子线棒是高压电机电、热、机械和环境等多重应力集中的核心部件之一。据统计,绝缘故障占水轮发电机故障的56%,而定子绝缘故障占绝缘故障的三分之二,定子线棒性能对发电机的稳定运行有很大的影响。定子线棒一旦发生问题,会导致发电机停机,甚至引起定子绕组损毁事故,造成重大的经济损失。因此,提高高压电机定子线棒的电性能,是保证发电机稳定运行和提高寿命的重要手段。本文系统研究高压电机定子线棒绝缘结构的优化方法,
发展电动汽车是改善能源短缺和环境污染的重要途径,近几年呈现“井喷”式增长,根据国际能源署最新报告:2019年电动汽车全球销量突破210万辆,同比增长40%。锂离子动力电池作为电动汽车的“心脏”,产量也不断攀升,国际动力电池权威研究机构SNEResearch报告:2019年全球锂离子动力电池出货量为116.6GWh,同比增长16.6%。动力电池每用必衰,2020年迎来首个动力电池退役高峰期,据中国汽
超级电容器是一种充、放电速度快、使用寿命长的电化学器件,其能量密度远高于传统电解电容器,但是与锂电池相比仍有较大差距。根据E=CV2/2的计算公式,要想得到更高的能量密度,可以选择提高比电容或工作电压范围两种方式。非对称电容器具有不同的正、负极材料,可以充分、灵活地利用两者的比电容和工作电压范围,从而优化整个器件的储能性能。开发性能优良的电极材料,研究其设计方案、制备工艺和储能机理,是有效提高非对