【摘 要】
:
新型复合材料的研发和优化一直是学术界研究的重点内容之一。功能梯度材料作为先进复合材料的代表受到了国内外学者的广泛关注,其材料空间组分的可设计性,使得其优越的材料热力学性能得以显现。孔隙是功能梯度材料中的常见缺陷,会对功能梯度材料的力学性能产生重要影响。出于对孔结构特性的思考并结合功能梯度材料的独特优势,我们将多孔轻质结构与功能梯度材料复合,使两种材料的特点集于一身,从而更好的满足工程所需。目前,功
【基金项目】
:
国家自然科学基金资助项目(11872336); 浙江省自然科学基金资助项目(LY18A020009); 机械结构强度与振动国家重点实验室开放课题项目(SV2020-KF-13);
论文部分内容阅读
新型复合材料的研发和优化一直是学术界研究的重点内容之一。功能梯度材料作为先进复合材料的代表受到了国内外学者的广泛关注,其材料空间组分的可设计性,使得其优越的材料热力学性能得以显现。孔隙是功能梯度材料中的常见缺陷,会对功能梯度材料的力学性能产生重要影响。出于对孔结构特性的思考并结合功能梯度材料的独特优势,我们将多孔轻质结构与功能梯度材料复合,使两种材料的特点集于一身,从而更好的满足工程所需。目前,功能梯度多孔材料在航空航天、生物医药、建筑化工等诸多领域均有涉及,发展前景广阔。在诸多工程问题中,许多研究对象均可简化为板条来考虑。功能梯度板作为工程结构中最基础的构件之一,研究它在孔隙影响下的力学性能表现具有非常重要的意义。本文利用推广后的Mian和Spencer板理论研究了考虑孔隙影响的功能梯度材料板的力学响应问题。本文具体开展了以下研究工作:(1)研究了多场作用下考虑材料内部孔隙影响的功能梯度多孔板条的力学响应问题。通过数值算例验证并讨论了作用场、不同孔隙参数、梯度指数和边界条件等因素对功能梯度板条力学响应的影响。结果表明:机械荷载和温度荷载对板条的力学响应有较大的影响。(2)研究了石墨烯增强功能梯度板条的弯曲响应问题。通过数值算例验证并讨论了石墨烯纳米片的几何尺寸和含量、孔隙分布模式、孔隙率以及边界条件等因素对功能梯度多孔板条弯曲响应的影响。结果表明:孔隙率和孔隙分布模式对板的弯曲响应有显著的影响。(3)获得了基于Biot理论的功能梯度多孔板条静力响应问题的解析解。通过数值算例验证并分析了Skempton系数、孔隙率系数、孔隙分布模式以及边界条件等因素对功能梯度多孔板条弯曲响应的影响。结果表明:Skempton系数和孔隙率系数对板条的弯曲响应有重要影响。本研究获得的解析解答均满足弹性理论中的平衡方程和板上下表面的边界条件,仅用圣维南原理在板的柱面边界处对应力边界进行了放松。因此,本文获得的解析解答可以作为基准解用于评价该类问题的数值解答的有效性,同时可以为功能梯度多孔板的优化设计提供理论指导。
其他文献
利用具有特异性靶向功能的荧光材料对癌症进行早期诊断是近年来热门的研究路线之一。碳点是一类直径小于10 nm的sp~2杂化零维碳纳米材料,具有较高的光稳定性、更低的细胞毒性、更好的生物相容性以及丰富的表面官能团,使其易于表面修饰。这些特性赋予了碳点巨大的应用潜力,如光催化、生物传感、生物成像、药物输送以及存储器件等。以癌细胞中过度表达的叶酸受体、CD44等作为靶向位点,与荧光材料复合后合成具有靶向功
多色荧光聚合物纳米粒子因其良好的水分散性、细胞相容性、独特的多色发射行为等优点在生物成像、防伪、信息加密以及智能纺织品等领域具有广泛应用。目前,实现荧光材料的多色发射的策略主要包括多种荧光组分用量调控或对具有刺激响应的荧光染料实施多种环境刺激。然而,这些策略往往材料制备路线繁琐、染料化学结构复杂,在很大程度上限制多色荧光材料的实际应用。因此,本研究打破传统策略聚焦于染料结构设计的研究现状,创新性的
近年来,石油化工、深海采矿、农田灌溉、城市污水处理等涉及到固液两相介质传输的行业在整个工业经济中的占比快速升高。离心泵作为上述工业的主要传输设备,其生产制造、装备维护、性能维护,受到了世界的广泛关注。在输送固液两相介质时,运动的颗粒对离心泵过流部件造成冲击或磨蚀,会导致离心泵水力性能不高,使用寿命低等问题。本文以带有半开式叶轮的固液两相离心泵为对象,分析了叶片型线对其内部流动和磨损特性的影响。首先
智能生产物流是指智能制造企业在智能生产环境中,通过自动导引车(Automated Guided Vehicle,AGV)、传送带、升降机和设备控制系统等技术,根据生产计划在生产作业时按照生产工艺进行原辅料的配送,部件或半成品在不同的加工点转运,成品从生产线到智能仓库出入库等运输作业的全过程。在生产物流过程中,融入路径规划技术的AGV是执行自动化生产及仓储运输的重要装置,基于智能化设备的多AGV的路
二维波导系统是一种利用微波传导产生的渐逝波作为传输介质的新型电能传输和信号传输技术,又被称作二维通信系统(Two-dimensional Communication System,2DCS),该技术以包含导电层、介电层和表面层的二维通信波导板为基础,通过渐逝波和电磁波的转换机制实现高功率的电磁吸收,可以为目标设备提供无线供电以及安全、高速的数据传输服务。2DCS系统作为实现泛在网络的一项突破性技术
智能制造在纺织领域的不断发展,智能纺织已成为纺织业升级转型的重要方向之一。目前,纺织业上下游产业链日益透明,企业要想在多品种、小批量和面向订单的生产模式中保持竞争优势,就必须提高自身对资源调度的能力。织造车间是纺织生产的重要环节,调度是织造车间的决策核心。因此,研究织造车间智能调度算法,对于提升织造车间的调度水平、提升企业生产效益、加速纺织业升级转型等具有重要意义。首先,本文分析了织造车间的生产流
高速离心泵作为一种结构紧凑的高扬程泵类流体输送设备,在石油、冶金等各个领域有着重要的地位。由于高速离心泵每年会消耗大量能源,对于提高高速离心泵的性能,减少其内部能量损失成为重要的研究方向。高速离心泵叶轮的叶顶常常会产生影响流道内部流动的泄漏流,这种泄漏流会造成较大的能量损失。为改善这种情况,本文以两级串联高速离心泵为研究对象,在原叶片(ORI)基础上设计了3种叶顶延展叶片(TEPS、TEP、TES
普通硅酸盐水泥(OPC)一直以来是混凝土制备中常见的成分,但其熟料生产阶段产生大量的二氧化碳与工业废料,与当前节能减排的大趋势相悖,亟需寻找一种可接受的绿色胶凝材料替代品。地聚合物(Geopolymer)是一种由经碱激活后硅铝酸材料制备得具有三维网状微观结构的无机胶凝材料,具有制备简单、力学性能好、碳排放少等诸多优势,且为工业废料的处理提供了一条新的途径,然而,粉煤灰基地聚合物制备阶段往往需要热养
分子间氢键作用以及随环境变化的动力学研究,是理解物质物理性质的基础和前提。在溶液相中,开展通过氢键形成的聚集簇合物以及动力学研究对生命科学、溶液自组装、超分子和晶体工程研究具有非常重要的意义。本文利用偏振拉曼光谱和核磁共振波谱等实验表征手段获取溶液相聚集体的聚集结构信息。结合量子化学振动光谱的密度泛函理论计算,按照聚集诱导光谱分裂理论建立分子结构模型,计算对应特征光谱图和实验测试结果相对照,相互印
作为一种清洁能源载体,氢气(H2)是理想的化石能源替代品,利用可再生能源衍生电力电解水制H2是实现全过程清洁环保的优选路径,高效电解水制H2需要高活性析氢反应(HER)催化剂以降低反应过电势。与高效的贵金属铂(Pt)相比,钌(Ru)具有与Pt类似的氢结合强度,但价格仅为Pt的4%,各类Ru基材料已初步展现出优异的HER催化性能。通过对Ru基材料本征催化活性的增益调控,深入探究Ru基材料的化学结构与