结果枝压力束缚对设施桃生长发育和果实品质的研究

来源 :山东农业大学 | 被引量 : 0次 | 上传用户:Dutch_deamer
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
环割是果树上促进花芽分化和提高果实品质的一种技术措施,但在桃树上易引发流胶现象,引起病害。为寻求一种环割替代技术,本实验以3年生设施油桃‘中油16’(Prunus persica L.cv.ZhongYou 16)为试材,设置环割、50 N、100 N和200 N的压力束缚共4个处理(以无任何处理的桃树为对照),比较不同处理的流胶率,并测定设施桃的光合特性、同化物分配、矿质营养以及果实品质,筛选100 N为最佳处理。主要研究结果如下所示:1、压力束缚处理能有效降低桃树的流胶率。50 N压力处理不流胶,100 N和200 N压力处理流胶率均为6.7%,环割处理的流胶率最高,为66.7%,为100 N和200 N压力处理下的10倍,差异极显著。2、压力束缚处理和环割降低了叶片光合性能,但压力束缚处理的降低幅度明显小于对照,以100 N处理下降幅度最小。在生长发育期间,气孔导度(Gs)、蒸腾速率(Tr)和净光合速率(Pn)均降低,但是胞间CO2浓度(Ci)升高。在叶绿素荧光方面,结果枝压力束缚促使初始荧光(F0)升高,可变荧光(Fv)、最大荧光(Fm)和最大光化学效率(Fv/Fm)均降低。3、压力束缚处理和环割能有效改善果实品质。桃果实硬度和总酸含量降低,单果重、固酸比和可溶性固形物升高,另外果肉中的总酚、类黄酮含量在各个处理中无显著性差异。根据主成分分析表明,100 N压力处理提高果实品质效果最好。4、各个处理降低了果实中的渗透调节物质含量,其中环割和200 N处理的可溶性蛋白质、游离氨基酸含量明显低于其他处理。果实中的可溶性蛋白质、游离氨基酸含量降低,并在果实成熟时含量达到最低值,其中100 N、200 N和环割处理相比于对照桃果实游离氨基酸含量分别下降了16.3%、33.8%和40.3%,桃果实可溶性蛋白质含量分别下降了20.6%、25.4%和30.2%。5、压力束缚处理和环割降低了桃叶片和果实的氮磷钾含量,随着压力的增大,桃叶片和果实中的氮磷钾含量越低,环割和200 N处理的最低,且无显著性差异。200 N处理的一年生枝木质部和一年生枝韧皮部中总的13C分配率为11.69%,明显高于其他处理,果实中13C的分配率最高,为33.38%,说明200 N处理下果实竞争能力较强,能分配到较多的同化物。
其他文献
锂硫(Li-S)电池因其具有比容量高(1675 mAh g-1)、能量密度高(2600 Wh kg-1)、硫资源丰富等优点而受到广泛关注。然而,Li-S电池具有一些本质缺点导致其无法进行商业化,主要有:(1)单质硫导电性差;(2)单质硫和放电最终产物Li2S的密度不同而引起的体积膨胀;(3)浓度梯度差引起的多硫化物穿梭效应。(4)金属锂负极的枝晶生长。在所有优化性能的策略中,对商业隔膜修饰是目前较
当今社会人口老龄化逐渐加剧,因为交通事故和意外损伤等情况,造成的肢体运动障碍的患者与日俱增,因此对康复训练的需求也日益增大。下肢康复训练机器人的应用主要是针对下肢
聚酰亚胺(PI)是一种高分子材料,由二胺、二酐单体经聚合反应合成。有着良好的热稳定性、化学稳定性等优异性能。PI种类形式多样,目前被广泛应用于航空航天、微电子、军事等多种领域,是综合性能最佳的有机高分子材料之一。然而,此类聚合物由于本身分子结构的特性,导致了其在应用方面存在着局限性。主要表现在两个方面:1、溶解能力差;2、难熔融,不易热塑加工成型。为了解决这些缺点,本论文利用咪唑类离子液体良好的溶
现代社会的变革和都市发展的变化,是直接影响幼儿园教育空间演变的主要根源。以往,人文地理学对空间的理解还只是处于整体意义上讨论人与空间的关系,从而忽视了人与空间互动
在新高考模式和新颁布的《普通高中地理课程标准》(2017年版)背景下,初高中地理课程及其在教学上的衔接也再次受到众多学者和一线教师们的密切关注。当下,初高中地理教学的衔接存在新的特点。做好初高中地理教学衔接工作,有利于提高课堂教与学的效率,促进学生地理学业的发展,从而为地理事业的新研究与发展提供良好平台。本文基于前人的研究,并结合在福州外国语学校高中部实习以及在福州铜盘中学初中部代课的地理教学实践