论文部分内容阅读
磨损事故一般起始于早期的轻度表面微损伤,对磨损表面的微损伤实现原位在线修复是降低摩擦、减小磨损的一种行之有效的方法。凹凸棒石是一类具有独特在线修复功能的硅酸盐材料,近年来在摩擦学领域成为研究热点。本文以制备高性能的原位修复型润滑脂为目标,研究了纳米金属(铜和镍)、固体润滑剂(石墨烯、二硫化钼和二硫化钨)和纳米稀土氧化物(氧化镧和氧化铈)对凹凸棒石基础脂摩擦学性能的影响,对润滑脂的减摩抗磨机理和微纳米颗粒的作用机制进行了探究,为凹凸棒石润滑脂的实际应用提供了实验依据和理论支持。以季铵盐阳离子表面活性剂为改性剂,通过微波改性工艺对凹凸棒石进行了有机改性。随后以有机凹凸棒石粉体为稠化剂,制备出了具有超高滴点和良好胶体安定性的润滑脂。考察了不同载荷、频率和温度下,微纳米颗粒对凹凸棒石基础脂减摩性和抗磨性的影响。研究表明,不同的条件下,微纳米颗粒对基础脂减摩性和抗磨性的改善效果不相同。含二硫化钼和二硫化钨的润滑脂在大多数条件下都表现出优秀的摩擦学性能,而两种稀土氧化物对基础脂减摩性和抗磨性的改善效果都不理想。摩擦过程中,摩擦副与凹凸棒石粉体之间发生摩擦化学反应,生成摩擦保护膜。50℃时,摩擦保护膜的主要成分为Fe、Fe3C、铁的氧化物、Al2O3、硅的氧化物、凹凸棒石和有机物等;200℃时,摩擦保护膜的主要成分为Fe、铁的氧化物、硅的氧化物、Al2O3、凹凸棒石和有机物等。微纳米颗粒在润滑过程中发生物理沉积或化学反应,产物掺杂至摩擦保护膜之中。同50℃相比,200℃时,凹凸棒石颗粒和微纳米颗粒的沉积吸附得到促进;另一方面,凹凸棒石、摩擦副和微纳米颗粒之间的摩擦化学反应也被促进。对于摩擦副与凹凸棒石之间的摩擦化学反应,纳米铜、纳米镍、石墨烯、纳米氧化镧和纳米氧化铈可以起到促进作用,而二硫化钼和二硫化钨则导致了抑制效应。在凹凸棒石的作用下,摩擦副实现了表面强化,其表面生成的摩擦保护膜的硬度明显高于基体。在各种微纳米颗粒的作用下,磨损表面的纳米硬度则得到进一步提高。润滑脂在润滑过程中,摩擦副与凹凸棒石之间发生摩擦化学反应,生成一层非晶态复相陶瓷修复层,修复层厚约10μm,其结构致密且厚度均匀。在纳米铜、纳米镍、石墨烯、纳米氧化镧和纳米氧化铈的作用下,修复层的厚度则都有不同程度地增大。微纳米颗粒在摩擦过程中发生物理沉积或化学反应,生成的产物掺杂至陶瓷修复层中,改善了修复层的自润滑性和抗磨性。