论文部分内容阅读
目前盐胁迫已成为重要的非生物胁迫之一,土壤盐渍化对农业的危害是一个全球性的问题。小麦属淡土植物,其生长受到盐胁迫的抑制,盐害直接影响着小麦生产的发展。在盐胁迫条件下,Na+会通过非特异性离子通道进入细胞内,为了减轻Na+的危害,植物细胞通过质膜上的Na+/H+逆转运蛋白把Na+排出体外,或者通过液泡膜上的Na+/H+逆转运蛋白把Na+区域化至液泡中,从而维持胞质内正常的离子均衡。本研究借助酵母(Saccharomyces cerevisiae)突变体,对小麦质膜Na+/H+逆转运蛋白TaSOS1和小麦液泡膜Na+/H+逆转运蛋白TaNHX2的耐盐性和其Na+/H+离子转运活性进行了分析。主要研究结果如下:1.分子信息学的分析表明TaSOS1与拟南芥AtSOS1和水稻OsSOS1的同源性高,TaSOS1可能与AtSOS1和OsSOS1的功能相同,为质膜Na+/H+逆转运蛋白,可以将细胞内过多的Na+排出体外。用荧光定量PCR的方法研究了TaSOS1的表达模式,分析了TaSOS1对NaCl盐胁迫、4℃低温胁迫、ABA离子胁迫和PEG6000干旱胁迫的表达情况。在正常条件下,小麦根中TaSOSl的mRNA表达量高于叶中的表达量;盐胁迫处理下,根中TaSOS1的特异性表达显著,呈现出上调表达,而叶中的TaSOS1在不同时间内的表达量差异不明显,表明TaSOS1在根中的表达丰度较高,与组织特异性有关,在根中受盐胁迫特异性表达。TaSOS1的表达不受ABA、PEG和低温的影响,为非ABA依赖途径。2.构建酵母表达载体pYPGE15-TaSOS1,用PEG/LiAc化学转化方法转入酵母中,通过酵母功能互补验证证实了TaSOS1可以部分互补酵母盐敏感突变体AXT3K的耐盐功能,能够在AP+80 mM NaCl的培养基上生长,而转空载体的对照则表现为致死。在20 mM NaCl胁迫之下,转TaSOS1基因的酵母细胞体内Na+含量比对照中显著降低,证明了TaSOS1具有Na+转运功能,可以把Na+排出体外,从而降低细胞内Na+的浓度。3.采用两相法提纯了转TaSOSl基因和转空载体酵母细胞的质膜,根据H+-ATPase对各专一性抑制剂的敏感性来鉴定质膜纯度。Na3VO4对H+-ATPase活性敏感性最大,H+-ATPase活性降低了60%,而NaN3、KNO3、Na2MoO4对H+-ATPase活性与对照相比基本无影响,说明膜微囊制剂未被线粒体、液泡膜及磷酸酶污染,从酵母细胞中分离到的质膜纯度较高,去除了大部分杂膜。4.用荧光猝灭的方法检测了质膜微囊内外H+梯度的变化,以达到稳态时每毫克膜蛋白所产生的荧光猝灭值计算跨膜H+梯度,进而检测转基因酵母细胞质膜的Na+/H+转运活性。结果表明含有TaSOS1基因的酵母细胞质膜,其Na+/H+转运活性要高于对照,Na+/H+转运活性的差异与NaCl的耐性和离子含量的结果相吻合,证明了TaSOS1蛋白具有Na+/H+转运活性,这种离子转运功能在耐盐过程中发挥着重要作用。5.克隆了小麦液泡膜Na+/H+逆转运蛋白TaNHX2, TaNHX2与AtNHX1和AtNHX2同源性最高,说明了TaNHX2可能与小麦的耐盐有关。Western blot结果表明,pYES2-TaNHX2可以在酵母中很好的表达。酵母功能互补实验表明TaNHX2可以互补AXT3K对盐的敏感性,能在含有30 mM和60 mM NaCl的AP培养基上正常生长,但其耐盐性没有达到野生型酵母的耐盐性,同时TaNHX2可以提高转基因酵母的耐钾性,这说明TaNHX2不仅有转运Na+的功能,同时也有转运K+的功能。研究了在NaCl胁迫条件下酵母细胞中的Na+、K+离子含量,在20 mM NaCl胁迫条件下,含有TaNHX2的酵母细胞中Na+含量与对照相比没有显著差异,相反,K+含量差异达到极显著水平。这可能是TaNHX2的耐盐性不单是由于其转运Na+,更重要的是由于K+在细胞内的积累导致耐盐性增强,这是目前报道的液泡膜NHX蛋白中第一个具有耐钾功能的蛋白。6.为了验证TaNHX2的cation/H+离子交换以及离子区隔化的功能,提取了转基因和转空载体(对照)酵母突变体OC02的完整的液泡,对照OC02几乎没有K+/H+和Na+/H+的交换活性。转TaNHX2的酵母可以把K+和Na+泵入液泡,且其K+/H+交换活性远大于Na+/H+交换活性,这与酵母中Na+、K+离子含量的结果完全吻合。从中可以推测出TaNHX2使K+泵入液泡从而使H+进入胞质中,K+泵入液泡使得K+作为渗透剂维持细胞的膨压促使水分进入细胞内,K+的区隔化可以阻止有害的Na+进入细胞内。这种机制可以帮助我们更好的理解植物体内NHX蛋白与钾营养吸收的关系。