论文部分内容阅读
如今,5G技术因其高数据速率、低延迟、低成本、更节能、更高的系统容量和更大的规模连接而越来越受欢迎。同时,我国5G基站入网已正式获得了工信部的开闸批准,并且5G也开始应用到商业甚至更多的领域当中。正交频分多路复用技术(Orthogonal Frequency Division Multiplexing, OFDM)作为当今通信系统的核心技术之一,具有抗多径衰落能力强、频率效率高等众多优点,它也将成为5G时代中各种演进技术的基础。然而,在应用OFDM技术的系统中,OFDM的高峰均功率比(Peak to Average Power Ratio, PAPR)是一个非常严重的问题。PAPR问题对功率放大器的线性放大区间有着显著的负面影响,这在现代通信系统中需要特别考虑。因此,本论文针对OFDM系统中信号PAPR较高、功放功率效率低的问题,研究了OFDM系统中解决高PAPR问题的各类方法,并系统地分析了各方案对功率效率、误码率、算法复杂度等方面的影响,重点分析了信号分解的解决方案,构建了改进的信号分解模型,针对理论分析以及不同的情形提出了两种信号分解算法,同时深入研究了算法的优化效果及复杂度。本文的具体研究内容如下:
针对OFDM系统中存在的高PAPR问题,总结分析了各类降PAPR技术后,基于信号处理的概率类PAPR抑制技术,本文提出了一种基于矢量信号分解的降PAPR高效率功放系统模型,其中包括矢量信号分解模型以及支路理想放大器模型。在信号系统中,根据OFDM信号符号样点的特性,本文推导了信号合成引理,并考虑降PAPR的最终目的提出了信号分类方法。基于信号分解模型的基本情况,提出了对称均匀信号分解算法,它通过每一支路都大幅降低信号PAPR来显著降低原信号峰均比,同时功放功率效率明显提高,可以满足未来OFDM系统对高效率放大器的要求。仿真结果表明,三支路对称均匀信号分解模型中,相比于原OFDM信号,高密度信号、中密度信号和低密度信号的PAPR下降量分别约为3.8dB、6.4dB和7.2dB,功率效率分别比OFDM系统高出近8%、18%和21%。
针对实际功率放大器不同饱和参数的实际情况,提出了正交非均匀信号分解算法。该算法根据实际支路功放的饱和功率来不断做两路分解,每次分解的一路子信号矢量为功放饱和振幅的等效矢量,这样,在利用分解算法分解以后,支路功放的饱和振幅都可以不一样,更符合实际应用场景。仿真结果表明,三支路正交非均匀信号分解模型中,功放饱和功率相同且为1时,高密度信号以及中密度信号的PAPR降低量显著且为定值,约为4dB,而低密度信号的PAPR降低量与原OFDM信号呈相关性,这也说明该算法的PAPR性能特性与第一种算法不一样,但都达到了降PAPR的目的;三支路的功率效率分别为16.9%、21.4%和25.3%,且在功放性能差异较大时具有十分理想的BER性能。根据BER仿真结果,在各种不同功放饱和参数情况下,该算法的抗噪性能良好,相比第一种算法更具实践性。总的来看,所提的两种信号分解算法均可达到降低OFDM系统信号的PAPR、提高功率放大器的功率效率的目标需求,它们无论是在发射端还是在接收端都具有相比传统系统更低的算法复杂度,且第二种算法更能适应放大器饱和功率不相同的情况,抗噪性能非常理想。
针对OFDM系统中存在的高PAPR问题,总结分析了各类降PAPR技术后,基于信号处理的概率类PAPR抑制技术,本文提出了一种基于矢量信号分解的降PAPR高效率功放系统模型,其中包括矢量信号分解模型以及支路理想放大器模型。在信号系统中,根据OFDM信号符号样点的特性,本文推导了信号合成引理,并考虑降PAPR的最终目的提出了信号分类方法。基于信号分解模型的基本情况,提出了对称均匀信号分解算法,它通过每一支路都大幅降低信号PAPR来显著降低原信号峰均比,同时功放功率效率明显提高,可以满足未来OFDM系统对高效率放大器的要求。仿真结果表明,三支路对称均匀信号分解模型中,相比于原OFDM信号,高密度信号、中密度信号和低密度信号的PAPR下降量分别约为3.8dB、6.4dB和7.2dB,功率效率分别比OFDM系统高出近8%、18%和21%。
针对实际功率放大器不同饱和参数的实际情况,提出了正交非均匀信号分解算法。该算法根据实际支路功放的饱和功率来不断做两路分解,每次分解的一路子信号矢量为功放饱和振幅的等效矢量,这样,在利用分解算法分解以后,支路功放的饱和振幅都可以不一样,更符合实际应用场景。仿真结果表明,三支路正交非均匀信号分解模型中,功放饱和功率相同且为1时,高密度信号以及中密度信号的PAPR降低量显著且为定值,约为4dB,而低密度信号的PAPR降低量与原OFDM信号呈相关性,这也说明该算法的PAPR性能特性与第一种算法不一样,但都达到了降PAPR的目的;三支路的功率效率分别为16.9%、21.4%和25.3%,且在功放性能差异较大时具有十分理想的BER性能。根据BER仿真结果,在各种不同功放饱和参数情况下,该算法的抗噪性能良好,相比第一种算法更具实践性。总的来看,所提的两种信号分解算法均可达到降低OFDM系统信号的PAPR、提高功率放大器的功率效率的目标需求,它们无论是在发射端还是在接收端都具有相比传统系统更低的算法复杂度,且第二种算法更能适应放大器饱和功率不相同的情况,抗噪性能非常理想。