论文部分内容阅读
在科技高速发展的今天,计算机技术、电子、信息、通信以及自动化被普遍应用到各个领域,其中也包括道路交通管理。为了解决道路交通管理、路桥收费站自动收费等问题,世界各国纷纷把目光投向了对各种交通运输系统的研究开发。这些交通系统的应用可解除收费站的“瓶颈”制约作用,较好地缓解收费站的交通拥挤、排队现象,侦察违章车辆、处理交通事故等。目前已有一些比较成熟的系统,并且很多已经投入使用,但是这些系统存在着一些局限性,也有的系统是在半人工半自动化的情况下操作的。本文的选题就是在这样一个大的研究背景下提出的。本文从汽车收费站实地拍摄的汽车图片着手研究,发现用于车型识别的汽车图片通常带有极复杂的背景噪声,而这些背景噪声不可能通过诸如背景相减等一些简单的方法去除掉。在本文研究过程的前期,遵循了提取轮廓线、寻找识别特征信息以识别车型的步骤。在提取轮廓线的方法研究中,首先把多种较成熟的方法应用到实验中,比较各种方法在本研究课题中的优劣,最后再把地理中等高线的原理应用到图像处理中,得到了较理想的车型轮廓,解决了在单一背景下提取轮廓线的局限性问题。用直线拟合车型轮廓曲线,不同的车型会有不同直线斜率和成角信息,由此提出了斜率之差算法,用于车型轮廓等高线的直线拟合。该算法为后续的车型分类识别提供了非常有用和可靠的特征样本信息。提取的车型轮廓是车型识别的一个重要特征,在此基础上,本文也关注到了汽车的长、宽、高等基本特征信息,特别是两车胎中心距这个特征成为本论文中车型识别的重要参数。通过多种方法的实验和比较,最后,文中抛弃了原有去除复杂背景噪声的想法,从汽车对象本身出发:首先,把等高线的原理应用到汽车模板的定位中;用Canny边缘检测器检测出目标车图和标准车图的边缘信息,并对标准车图的边缘图像用贴标签法得到各种车型的模板;最后,用模板匹配的算法,把各种车型的模板和目标车图做匹配,以达到识别各种车型的目的。实验证明,此方法可得到较高的识别精度。