论文部分内容阅读
在求解随机延迟微分方程(SDDE)中,许多学者构造了多种形式的线性多步法,并研究了它们的稳定性和收敛性,但是在它们针对的SDDE中,漂移系数和扩散系数的延迟项是相同的,然而在实际中,它们的延迟项是不相同的,且是任意正常数.对此尚未研究.因此本文考虑了一种新的非线性SDDE,其中漂移系数和扩散系数的延迟项是不同的,分别用τ1,τ2表示,τ1,τ2可取任意正常数.本文将常微分方程的k步BDF法推广到这类非线性SDDE中,构造了新的随机k步BDF法,并研究了它的均方稳定性,均方收敛性.再将随机k步BDF法运用到一维SDDE中,获得了该数值算法的均方相容条件和均方收敛阶. 第一部分为绪论.主要介绍随机延迟微分方程的相关背景和国内外研究现状,本文的创新之处和主要内容,以及本文涉及的符号说明. 第二部分简要介绍了本文新构造的随机k步BDF法,并给出了它均方稳定,均方相容,均方收敛的相关定义和结论. 第三部分证明了随机k步BDF法的均方稳定和均方收敛定理,给出了稳定性不等式. 第四部分将随机k步BDF法运用到一维SDDE中,获得了随机k步BDF法的收敛阶. 第五部分构造随机3步BDF法,通过Matlab软件,用数值试验验证它的均方稳定性和均方收敛阶.