【摘 要】
:
香料佳乐麝香(HHCB)和抗菌剂三氯卡班(TCC)被广泛用于化妆品和洗涤剂及其它药物和个人护理品中。由于HHCB和TCC在水体中具有较高检出率以及对水生生物的潜在毒性,所以急切推导HHCB和TCC的水生生物基准。在本研究中,选择3门8科的中国本土物种进行毒性试验,4种方法用于推导水质基准。对于HHCB,由美国水质基准指南推导的急性基准(CMC)和慢性基准值(CCC)分别为8.33μg/L和2.20
论文部分内容阅读
香料佳乐麝香(HHCB)和抗菌剂三氯卡班(TCC)被广泛用于化妆品和洗涤剂及其它药物和个人护理品中。由于HHCB和TCC在水体中具有较高检出率以及对水生生物的潜在毒性,所以急切推导HHCB和TCC的水生生物基准。在本研究中,选择3门8科的中国本土物种进行毒性试验,4种方法用于推导水质基准。对于HHCB,由美国水质基准指南推导的急性基准(CMC)和慢性基准值(CCC)分别为8.33μg/L和2.20μg/L。由log-normal,log-logistic和Burr TypeⅢ物种敏感度分布(SSD)法推导的急性无可预见浓度值(PNECs)分别为77.41,66.47和61.36μg/L。对于TCC,由美国水质基准指南推导的CMC和CCC分别为1.46μg/L和0.21μg/L。由log-normal,log-logistic和Burr TypeⅢSSD法推导的急性PNECs分别为2.64,1.88和3.09μg/L。通过比较由本土和非本土物种推导的HHCB和TCC水生生物基准值显示由中国本土物种推导的水生生物基准值能对非本土物种提供充分的保护。进一步地,硝基麝香与多环麝香的慢性SSDs比较表明,硝基麝香对水生生物的毒性更大。其中两种多环麝香的SSDs比较发现HHCB比AHTN有更高的生物毒性。与水环境中的其他抗菌药物相比,TCC对淡水生物的毒性更大。最后,对于世界范围内的地表水和污水处理厂出水,HHCB的生态风险评价显示地表水中的HHCB有较低的风险。然而,4.08%和46.17%中国地区的污水处理厂出水分别会对5%(HC5)和1%(HC1)的水生生物造成生态风险,1.71%和16.13%的国外污水处理厂出水会分别对5%和1%的水生生物造成生态风险。TCC的生态风险评价显示黄河流域和珠江流域有较高的风险,平均潜在生物影响比例(PAF)分别为9.27%和7.09%,22.1%和15.0%的水域可能会对5%水生生物造成潜在风险。总的来说,亚洲地区水体中的TCC暴露风险比欧美地区高。TCC与TCS在水生环境中的浓度呈极强的线性正相关,相关系数R2为0.8104,对TCC和TCS的水环境监测和风险预测具有重要意义。
其他文献
吲哚与咔唑类化合物作为重要的含氮芳杂环化合物,在医药、染料、光电材料和精细化工业产品中有广泛应用,因此如何高效的合成吲哚与咔唑类化合物成为化学工作者的研究热点之一。本论文主要研究了吲哚类化合物与咔唑类配体的合成,可以分为两个部分:第一部分:研究了铁促进的过硫酸钾氧化分子内C-N偶联合成吲哚。以2-苯基乙烯基苯胺类化合物为底物,探索了在氟化亚铁的作用下,用过硫酸钾为氧化剂,通过分子内C-N偶联合成吲
植被生态水是指与地表植被紧密相联的水体,包括植被叶面、根系、腐殖层、表层根系土壤层及植物体本身所截留或涵养的水量。植被生态水是陆地生态系统水循环中的一个特殊过渡
超表面技术的发展极大地拓宽了电磁场领域的研究范围,在天线性能的改善和隐身防护等多个方面被广泛地应用。超表面技术具备特殊的电磁调控能力,对电磁波的相位调控能力应用在波束调控等方面,能够任意调节散射波束的形状,进而实现对电磁波的有效调控,因此新型人工电磁材料在诸多领域备受关注,并广泛应用于对多种功能器件的研究。使用超表面技术构造的吸波阵列,能够在特定的频段实现对电磁波的吸收。三维(3D)模型的散射方向
为了监测发动机的工作状况,传感器需要尽可能贴近高温发动机表面,航空、航天、核能领域迫切需求能工作在500?C或者更高温度条件下的传感器。铋层状结构铁电陶瓷具备高居里温度、抗疲劳等特点,可应用于极端环境下工作的高温压电传感器,然而极低的压电性能限制了其实际应用。本文以居里温度极高(940?C)的CaBi_2Nb_2O_9(CBN)为研究对象,采用固相反应法合成多元稀土元素(Li,Ce,Sm)、(Li
吲哚是一种重要的含氮杂环化合物,它们的衍生物在自然界中分布广泛,许多含有吲哚结构单元的天然化合物都与生命活动密切相关。目前,吲哚类化合物在气相中的反应机理引起了人们的关注。本工作主要采用电喷雾电离源-碰撞诱导解离技术(ESI-CID-MS/MS)结合氢氘交换实验、区域氘代标记实验以及量子化学密度泛函理论计算对3-苯磺酰基吲哚衍生物、2-苯磺酰基吲哚衍生物和3-苯硫基吲哚衍生物这三类有机化合物的C-
在气化技术中水蒸气是比较常用的气化剂,关于煤焦-水蒸气气化机理的实验探究已经较为详尽。但是对于气化反应内部的微观机理,由于常规实验手段不能观测反应中的原子运动与电子交换,所以目前对于微观机理的探索一般采用量子化学计算进行模拟研究。目前对于气化反应,尤其是水蒸气气化微观机理的探究仍有很多工作需要完善。除了对气化微观机理的补充,量化计算与气化反应的结合还存在可以改进的部分,诸如模型,反应体系和反应路径
近年来发现细胞表面存在一种非释放性的新型囊泡。目前,对该种细胞表面囊泡的组成、结构、产生、运动、命运和功能均知之甚少。细胞的铺展和迁移是两种重要的细胞状态。本论文猜测在不同的细胞状态下细胞表面囊泡的产生和运动规律可能不同。因此,本论文对不同细胞状态下细胞膜表面囊泡进行单囊泡追踪分析。首先,细胞铺展状态下,分别用OxLDL,TNF-α,VEGF和LPS刺激HUVECs后,细胞间粘附分子(ICAM-1
我国能源结构不合理、环境污染严重,能源结构亟需转型。甲烷水合物是一种能量密度高、污染小的理想替代能源,世界各国竞相开展其勘探与开采技术研究,目前甲烷水合物的开采技术仍不完善,需要进一步开展相关研究。根据储藏内水合物、自由气与自由水分布的差异,自然界的水合物藏被划分为四种类型(第一、二、三和四类),其中第四类水合物藏缺乏上下非渗透盖层且水合物饱和度低,不具备开采研究价值。不同类型水合物藏开采过程中产
本论文以青岛某标段地铁隧道为研究对象,运用数值模拟的方法研究了扁平率和上台阶两步法施工方式对隧道围岩稳定性的影响规律,在此基础上建立起了隧道围岩稳定性评价指标体系和风险评价方法,并对风险性进行分级。通过本文的研究,主要得出了以下结论:(1)扁平率对地表沉降、拱顶沉降的影响较大,其次是底部隆起,对两帮收敛的影响较小。对地表沉降的影响主要集中在沉降槽宽度系数以内。(2)随着扁平率的减小,拱顶上方出现了
SiC陶瓷及其复合材料具有高强度、高硬度、高熔点、优异的抗辐照能力及化学稳定性等优点而被认为是航空航天和核工业等对材料要求极为苛刻领域的理想结构材料。然而,由于陶瓷材料极大的脆性及技术和设备的限制,很难直接成型加工制备出尺寸大或形状复杂的陶瓷部件,往往需要通过材料连接来实现。因此,SiC陶瓷及其复合材料连接技术是制约其工程应用的关键因素之一。针对SiC陶瓷钎焊接头高温领域的应用需求,本研究首先优化