基于食源性致病菌快速检测的线基微流控纳米生物传感器的研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:teddy18chen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
食品安全问题一直是民众最为关心的安全问题之一,我国每年因为食品安全问题产生大量的经济和社会损失,这其中致病性食源微生物又占据了食品安全的主要方面。因此对于食源性微生物的检测显得尤为重要。现在主流的食源性微生物的检测方法主要有病原体培养法、基于抗原-抗体反应的方法和PCR方法等,这些方法往往需要很长的检测时间,而且需要专业的人员进行操作不易于微型化。本文针对主流食源性微生物检测方法的缺点,设计了成本低廉、方便快速的,用于食源性微生物检测的线基微生物纳米传感器。首先,设计了一种用于海鲜中副溶血弧菌检测的线基生物传感器,采用棉线制作了线基微流控通道,在尼龙线的表面涂覆导电材料制备了线基电极。Mo S2纳米片被用来修饰在工作电极表面,有效的提升了传感器的检测限,提高了其灵敏度。在优化条件下,该传感器平均检测耗时为30分钟,最低检测浓度为5.74CFU/m L,对副溶血弧菌的动态检测范围为10-106CFU/m L,线性相关系数达到了R2=0.9917。此外,对不同浓度副溶血弧菌加标的海产品,对比了平板计数法和传感器检测的方法,结果显示二者的相对标准偏差<10%。其次,本文创新性的设计了一种基于BP/Au的三维丝网印刷纳米电化学生物传感器,用于诺如病毒的检测。采用大头针作为可分离式工作电极,对电极和参比电极采用丝网印刷的方式制作于织布表面并在背后涂抹PDMS构成疏水层。剥离和制备了BP/Au纳米材料,通过将BP/Au纳米材料修饰在大头针工作电极表面,增强了电化学检测的电信号。在优化条件下,该传感器的平均检测时间为30分钟,检测到诺如病毒的最低浓度为0.30ng/m L,在诺如病毒浓度为1ng/m L-10ug/m L的浓度范围内达到很好的线性度,相关系数为R2=0.9798。
其他文献
手术机器人因制造与装配等原因产生的几何尺寸误差,以及在机器人运动过程中所转化成的运动误差,使得手术机器人末端执行机构的实际位置与理论位置产生偏差,从而给手术时的精度带来了很大的隐患。为了解决这个问题,有必要对手术机器人的运动以及其在运动过程中产生的误差进行研究,从而在控制以及反馈系统中给予一定的补偿。为了保证手术机器人在工作过程中的可靠性,手术机器人的从手的运动应当符合医生控制的主手的运动,因此分
随着科技的进步与发展,越来越多的智能设备进入到人们的生活中,外骨骼机器人就是其中的一个,外骨骼机器人是穿戴在使用者身上并根据人的意图辅助人运动的智能设备。在外骨骼机器人的研究中,如何准确的识别人的运动意图是机器人控制系统中的重点。目前,意图识别技术主要分为运用电生理信号识别,如脑电信号、肌电信号、眼电信号;以及运用一般物理信号识别,如姿态信号、足底压力信号、人机交互力信号等。电生理信号比较微弱,容
无源助力外骨骼是一种能够支撑穿戴者负重,辅助人体运动的无动力的可穿戴机械装置。传统有源驱动助力外骨骼受限于电池技术,无法长时间持续穿戴使用,影响在户外的实际应用。无源外骨骼采用轻量化设计,不借助外部能源,依靠外骨骼机械结构和人体负重原理实现对人体的运动辅助,具有轻便、易穿戴、可长时间使用等优点,但无源外骨骼仍存在腿部支撑性和舒适性不足的问题。本文通过对无源助力外骨骼膝关节的支撑性和大小腿结构的舒适
MEMS压阻式压力传感器具有体积小、线性度高等特点在航空航天、汽车电子等领域具有广阔应用。随着航空航天等领域对高灵敏度、低非线性度MEMS压阻式压力传感器的需求增大,研制高性能的新型压力传感器十分必要,因此本文提出了一种新型的压力膜结构来实现MEMS压力传感器的高灵敏度与低非线性度。本文以MEMS压力膜为研究对象,以小挠度变形保证新型MEMS压力膜的线性度,采用惠斯通电桥为检测方法。论文的研究过程
随着科技进步与经济发展,国民对于生活品质的需求日益增加,作为前沿研究的热点之一,智能机器人的发展也慢慢从用于提升生产力的工厂中的工业机器人慢慢转向了用于提升生活品质的服务机器人中。人民生活水平和社会生产力水平的提升,让越来越多的机器人成为了人们日常生活中的好帮手,无论是针对个人家庭场景的扫地机器人、陪伴机器人还是针对专业场景的快递机器人、酒店机器人等等,越来越多的服务机器人帮助人们提高了生活质量。
温度与湿度是自然界中意义重大的两个物理量,对它们的测量自然也是十分重要的。温湿度传感器在工业农业生产、气象学、医学等领域中已经投入大量应用。近年来,物联网技术在逐渐兴起,电子设备也正朝着可弯曲折叠的趋势发展,传统的温湿度传感器的在柔性化方面开始投入研究。本论文制备了基于石墨烯/碳纳米管的电阻式柔性温度传感器与基于聚酰亚胺(PI)的电容式柔性湿度传感器。对传感器的敏感材料进行了表征分析,并对传感器的
对抗是现实中十分常见的问题,小到游戏,大到战争处处都有对抗的影子。智能体攻防对抗是一种典型的对抗问题,其对抗主体由若干防守者与若干进攻者组成,防守者的任务是防守平面上的某一目标区域免于被进攻者靠近。对该问题的研究主要存在两个关键点:首先,攻防对抗问题属于微分博弈问题,需要对博弈的纳什均衡状态进行理论分析。其次,在实际应用问题中,需要设计适当的控制器以指导智能体的博弈过程向均衡状态发展,随着无人设备
聚偏氟乙烯(Polyvinylidene Fluoride,PVDF)薄膜这种类型的压电材料相较其余类型的压电材料,它的频响范围更大,延展性也更好,同样条件下的灵敏度也很优异,因而更适合于制成与人体相接触的触力传感器。本论文主要研究设计了一款基于PVDF的触力传感器阵列;得到了每个阵列点的理论电压输出表达式;对其上下衬底材料进行了优化分析;对其静态特性和动态特性参数进行了表征,并证明了其能较为准确
随着关节类机器人研究的深入和应用的普及,更强大的运动性能和更广泛的环境适用性已成为未来发展趋势。驱动器作为机器人运动系统的核心,决定了机器人的运动精确性、空间机动性、目标承载性和动态交互性。然而,在使用驱动元件驱动腿型、跳跃型和外骨骼型等关节类机器人时,往往面临着功率峰值大、输出变化频繁、系统碰撞冲击强等问题,增加了相关能源消耗成本的同时,也降低了机器人系统的整体稳定性,对关节类机器人驱动系统的设
我国走在制造业强国的发展道路上,随着工业产品的复杂化和多样化,作业场景也是错综复杂和空间狭小,对机器人的灵活运动能力和控制性能带来了挑战。蛇形机器人具备超冗余自由度,能灵活避开障碍物,可以保证狭小空间内作业的安全性,因此在工业领域各个方面都将会有广泛应用前景。本文预研究设计了一款24自由度的气动驱动蛇形机器人,对其三维避障运动规划展开了深入研究。此项研究可应用在我国的工业机器人领域,符合国家战略规