【摘 要】
:
矿井水害一直是威胁煤炭安全开采的主要灾害之一,在煤层开采过程中水害的潜在威胁程度要远远大于其它灾害。龙湖煤矿断层构造较发育,浅部采空区较多,在天然裂缝、断层以及人类采掘活动的影响下导水裂隙易发育成良好的通道导通采空积水区或其他水体,严重影响矿井的安全生产,为保障矿井的安全开采,对龙湖煤矿进行矿井水水源识别和水害危险性预测评价对实际生产具有非常重要的意义和价值。论文结合研究区地质、水文地质资料,对研
论文部分内容阅读
矿井水害一直是威胁煤炭安全开采的主要灾害之一,在煤层开采过程中水害的潜在威胁程度要远远大于其它灾害。龙湖煤矿断层构造较发育,浅部采空区较多,在天然裂缝、断层以及人类采掘活动的影响下导水裂隙易发育成良好的通道导通采空积水区或其他水体,严重影响矿井的安全生产,为保障矿井的安全开采,对龙湖煤矿进行矿井水水源识别和水害危险性预测评价对实际生产具有非常重要的意义和价值。论文结合研究区地质、水文地质资料,对研究区不同层位、采空区、井底水仓以及出水隐患点水的水化学和同位素特征进行了分析。利用变异系数法、Piper三线图法得到研究区水化学组分变异系数大部分在0.5以上,水体受水-岩作用、蒸腾、蒸发作用以及人类活动等因素影响较大;TDS与Na++K+、Ca2+、Mg2+、HCO3-表现出较强的相关性,在70%以上,含量变化是由于补给过程中水-岩作用溶解岩盐矿物以及离子入渗迁移所致。通过同位素D、13C、14C、18O差异性与水化学特征分析,识别出煤系水、水仓水以及含水层水来源以地下水为主,大气降水和地表水为辅。通过模拟预测得知强降雨后河水位上升,降雨入渗补给占总补给量的39.22%,龙湖河补给占总补给量的60.78%,强降雨后龙湖河补给矿区水量要大于降雨入渗补给量,矿区南部、东南部以及东部浅层水位明显上升,深层水位只有东南部略微增加,降雨对浅层地下水有一定影响,对深层水位影响很小。综合确定影响矿区水害危险性的五个主控因素:断层复杂程度、含水层富水性、隔水层厚度、煤层厚度以及降雨;运用模糊层次分析法和熵权法确定各影响因素综合权重,构建水害危险性评价模型并进行评价,将其划分为安全区、较安全区、过渡区、较危险区以及危险区五个区域,根据危险性分区图可知水害危险性由北向南呈现逐渐增大的趋势,危险区和较危险区主要分布在中部以南,过渡区分布面积相对较大,主要分布在中部以西,较安全区大多分布在中部以北,西北部、北部以及东北部区域危险性最低。该论文有图60幅,表28个,参考文献72篇。
其他文献
造成食品安全隐患的因素有很多,主要包括微生物污染、化学性污染、放射性污染等因素,其中微生物污染是造成食品安全问题的主要原因,也是临床上主要传染性疾病的源头。因此,开发新型高效、稳定、绿色抗菌的材料和方法,对食品安全和临床细菌诊疗具有重要的意义。致病菌的早期定性和定量分析对医学治疗同样具有重要的指导性意义。为了避免检测后致病菌对环境的二次污染及能源损耗等问题,开发检测和杀菌一体化的新型生物方法是目前
近十年来,钙钛矿太阳能电池(PSCs)发展迅速,其具有制备工艺简单,应用场景广泛等特点而引起科研人员的极大兴趣,PSCs的光电转换效率(PCE)从最初的3.8%攀升至25.7%。但较差的稳定性和较高的制造成本限制了其进一步发展,因此下一步的研究重点在于提高稳定性和降低制造成本。目前常用的空穴传输材料(HTMs)是PTAA(聚-[双-(4-苯基)(2,4,6-四甲基苯基)胺])和Spiro-OMe
粉煤灰是煤燃烧产生的固体废物,经集尘器收集得到。我国是煤炭消费大国,在2020年,工业企业的粉煤灰产生量为7.81×10~8t,2024年预计粉煤灰产量将达到9.25×10~8t。粉煤灰的排放不仅占用大量土地,且会导致大气污染、水源污染、土壤污染、地质灾害等问题,对环境生态和人体健康造成极大的危害和影响。水中过量的磷会导致水中植物、藻类过度生长,造成水体中溶解氧含量降低,水体生态平衡遭到破坏,即发
移动网络的迅速发展和智能设备的普遍应用,使得大量包含位置信息和文本信息的空间-文本对象涌现在Web上,推动了美团、携程、头条、Gowalla、Yelp、Foursquare、Facebook等基于位置服务系统的发展。这些空间-文本对象表示了现实中的兴趣点(Point of Interest,POI),如餐厅、景点、宾馆等地点,兴趣点推荐技术正成为当前时空数据库、推荐系统和基于位置的服务领域备受关注
再生医学专注于应用细胞修复损伤或失去功能的组织,Muse细胞在再生医学领域表现出巨大的应用前景。目前尚未有根本治疗方法的肌萎缩性侧索硬化症(ALS)以及中风后的脑梗和心肌梗死等疾病,在基于Muse细胞的细胞疗法的临床试验中取得意外成效。通过静脉注射的方式给药无需手术,并且同种异源的Muse细胞也不会引起免疫排斥,可在宿主组织区域保留很久。Muse细胞较低的增殖活性是目前急需解决的问题,本课题从手性
增量循环加载通过压裂前循环增加注入压力,改变井筒附近岩体孔隙压力,进而改变围岩的临界破坏区间,利于复杂缝网结构形成。增量循环加载促进缝网形成概率,但增量循环加载对煤系页岩人工裂缝起裂扩展规律尚未明确。根据现场注水压力加载方案,设计两种增量循环加载注水压力模式并开展对应的煤系页岩水力压裂试验。以清水为压裂液,试验过程通过多通道采集仪对注水压力实时测量,利用声发射对裂缝信息进行实时监测。通过对注水压力
随着我国一带一路的快速发展,圆形钢管在工程领域发挥着不可替代的作用,它的应用范围广泛,如各种用途的输送管道、空间网壳结构和海洋平台等。作为构成这些结构的圆形钢管而言,随着使用年限的增加,将出现不同程度上锈蚀的现象。这种锈蚀的出现会使钢管的有效厚度减小,降低了结构的承载能力,最终影响其使用寿命。所以,圆形钢管作为空间网格结构的主要构件,研究圆形钢管的极限承载力退化规律具有重要意义。本文通过建立具有随
形状记忆合金(SMA)电热致动器因其响应快、驱动电压低等优点,在仿生机器人手臂、汽车零件和航空航天智能机翼中有着很大应用前景。然而,SMA致动器还存在回复慢、输出力低和致动形变小等问题,限制了它在高频机器人、医用微型手术等应用中的潜力。针对上述问题,本文通过结构设计和材料制备,实现了高频响应高输出力的SMA复合致动器。具体研究内容和主要结论如下:(1)基于形状记忆合金的固-液冷却的快速降温方案的设