医用钛金属表面柔性层制备与力学性能研究

来源 :宁波大学 | 被引量 : 0次 | 上传用户:xinyi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
医用钛金属由于其优异的性能被广泛应用于人工植入,本文在前人的研究基础上,通过化学法在医用钛金属表面进行柔性结构层的制备,建立反应条件与柔性层微观结构的关联,并对不同条件下制备的柔性层的力学性能进行了研究。首先,通过化学水热反应的方法,采用不同的反应条件,在医用钛金属表面进行柔性结构层的制备。分别控制水热反应中时间、Na OH溶液浓度和温度,研究时间、溶液溶度和温度对医用钛金属表面柔性层微观结构的影响,建立反应条件与柔性层微观结构的关联性。结果显示在相同Na OH溶液浓度和温度下,医用钛金属表面柔性层的微观结构随着时间增加存在显著差异,微米多孔道尺寸随着反应时间的增加不断增加,柔性层厚度在6h之内呈递增趋势;在相同反应时间和温度下,医用钛金属表面柔性层的纳米线直径随着Na OH溶液浓度增大而增大,2mol/L下的纳米线转变为纳米棒状结构,孔洞逐渐被纳米棒覆盖;在相同Na OH溶液浓度和时间下,医用钛金属表面柔性层的微米多孔结构随着温度升高而逐渐成型,230℃下的表面柔性层厚度可达50μm左右;以上结果显示医用钛金属表面柔性层微观结构与化学反应条件中的时间、溶液溶度和温度都存在显著的关联性。然后,对不同条件下制备的柔性结构层采用不同的仪器(维氏硬度仪和纳米压痕/划痕仪)和不同加载方式(恒位移加载荷恒载荷加载)进行力学性能研究。结果显示柔性结构层的维氏硬度与柔性层微观结构和厚度具有关联性,且柔性层微观结构的影响大于厚度的影响;通过纳米压痕恒位移测试显示,柔性层表面纳米硬度随着测试次数的增加而增加,达到一定测试次数后,柔性层表面纳米硬度出现显著回落;通过纳米压痕恒载荷测试显示,柔性层表面具有一定的回弹性能;通过纳米划痕测试显示,柔性层表面纳米线拉伸强度大于600MPa。最后,对不同条件制备的柔性结构层表面亲疏水性能进行研究。结果显示柔性结构层表面具有超亲水性能,亲水能力受到反应时间、Na OH溶液浓度和反应温度的影响,亲水角随着反应时间,Na OH溶液浓度和反应温度增大而不断减小,直至接近0°。
其他文献
随着科学技术的发展,薄膜材料在机械、半导体、电子器件等各个领域的应用越来越广泛,加工技术也越来越丰富,薄膜材料的应用也更加重要,先进的薄膜制备技术也越来越受到重视。在先进制造工艺生产的现代化产品中,采用多种加工技术,可以在多种基材表面加工厚度相对较薄的薄膜涂层,以满足产品功能和其他应用需求,这就要求了解薄膜的材料性质是否满足产品所需的功能要求。薄膜材料的物理性质的精确测定和研究对产品设计和加工都有
学位
专利文本中蕴含着丰富的与产品创新设计相关的信息,是企业求解创新设计业务的重要参考信息来源。然而,随着专利数据量的快速增长,单纯依靠人工的查阅,很难及时、快速地实现对大量基于专利的创新知识资源的获取。因此本论文基于此背景开展了面向创新设计业务求解的专利资源配置研究,针对创新设计业务的求解需求推荐相关专利资源。另外向研发人员进行个性化的专利推荐,以提升研发人员的创新能力,促进创新研发设计业务的求解绩效
学位
医院门诊预约是医疗系统中科学管理的关键环节,高效决策能缩短患者等待时间、优化门诊流量及提高患者满意度。国内多数医疗机构虽已基本普及门诊预约,但实施效果各不相同。通过预约虽能保证就医,但是仍存在等待时间较长现象。究其原因,一方面是预约策略相对单一固化,另一方面是医疗机构普遍的混合就诊模式(兼有预约患者和直接步入就诊患者),而步入式患者往往存在部分时段集中到达的特征,造成就诊负荷不均衡现象,使得单一固
学位
针对当今国内外上肢运动功能障碍患者的群体数量逐年增多,但康复医师紧缺、康复设备昂贵等现状,以上肢康复训练机器人为研究对象,以满足较大空间康复训练需求、结构紧凑且成本低廉为目标,研制了一种串并混联末端牵引式上肢康复机器人。本论文的主要研究内容以及成果如下:首先,根据解剖学研究对人体上肢进行简化并采用Modified Denavit-Hartenberg(Modified-DH)法建立上肢模型连杆坐标
学位
材料的刚度和破坏特性往往是一对对立的物理量,相互制约和束缚。因此,研究轻质多孔材料在刚度优化设计下的失效行为,对我们设计高刚度轻质材料具有非常重要的意义。同时拓扑优化方法在先进增材制造技术的辅助下为设计新颖、轻质、高刚度的晶格材料提供了新的道路,作为胞元有序排列的多孔材料,点阵材料有着更加稳定有效的力学性能。本文利用ANSYS Workbench中的拓扑优化模块设计了单轴压缩下刚度最大的点阵材料。
学位
间隙密封旋转接头是一种将旋转设备与固定管道相连接的连接件,旋转接头可以同时输送不同类型及不同压力的流体介质。在设计过程中要保证流体介质在输送过程中压力稳定,各个型腔之间防止因泄漏导致的不同流体间的混合污染。间隙密封旋转接头具有减少摩擦损耗、发热量小、使用寿命长等特点,因此研究旋转接头的泄漏特性具有重要的意义。通过公式推导得到同心、偏心、倾斜、偏心及倾斜的旋转接头间隙流动泄漏公式,得到影响旋转接头密
学位
碳纳米管因其优越的机械和热力学等性能已经成为广泛应用于聚合物的补强材料。关于碳纳米管补强丁苯橡胶摩擦学性能的宏观试验、机理已经被广泛研究,但是微观尺度上的碳纳米管补强橡胶机理还有进一步完善的空间。因此,本文通过分子动力学的方法构建了碳纳米管复合硫化丁苯橡胶与铁壁板的摩擦模型,从原子尺度上研究了碳纳米管对硫化丁苯橡胶结构和力学性能的影响,揭示了碳纳米管改善丁苯橡胶摩擦学性能的微观机理。此外,通过建立
学位
软质橡胶轮的杨氏模量、弹性和硬度均较一般乘用轮胎更低,一般用在需要有更好抓地力的竞技轮胎或需要静音的实验室搬运和输运设备上。然而,软质橡胶轮胎在受到剪切力后会易磨损,更易形成磨损颗粒物,这对运动员及赛车维修人员的健康和实验设备的运行造成不良影响。然而,针对这类软质轮胎橡胶磨损颗粒物的研究尚无报道,因此,阐明软质轮胎橡胶磨损颗粒物的粒度、性态及数量与其磨损特性的关系,探明颗粒物产生的机理,明晰颗粒物
学位
绳驱动连续体机器人具有结构轻量化、柔顺性好、能够实现连续变形等特点,受到学者的广泛关注。由于采用了柔性支撑,而柔性支撑通常具有较小的刚度,因此,此类机器人容易在运动过程中产生形变带来的误差,且机器人的加工和安装也通常会存在误差,这会降低机器人的控制精度。本文通过建立机器人的误差模型,对几何误差进行辨识、标定与补偿,以提高机器人控制精度;在几何误差补偿的基础上,研究连续体机器人的形状感知技术以及反馈
学位
随着高端装备制造领域的发展,滚动轴承作为机械工业中被使用最广泛的部件之一,正面临更加严苛的工况条件,如循环的重载荷的持续作用、高速运转使摩擦副接触表面过热等。复杂多变的工况条件会使滚动轴承摩擦副接触表面承受极高的接触应力和热应力,导致接触区域疲劳损伤加速。即使接触表面得到足够充分的润滑和散热,裂纹也会从接触区域亚表面最大应力集中处萌生,尤其是在材料结构不连续的位置,比如晶界和夹杂。然后向表面扩散和
学位