论文部分内容阅读
目前,随着市场竞争的不断加剧,要求企业必须快速响应市场和用户的需求。而模具是制造各种产品的关键工艺装备,为了加强产品的市场竞争力,客观上要求缩短模具的开发周期、降低模具制造成本。基于快速原型的快速制模技术具有制模周期短、成本低、精度和寿命又能满足使用要求的特点,有显著的综合经济效益。本文将快速制模和陶瓷型精密铸造技术相结合,提出了基于快速原型的陶瓷型快速制模技术,为金属模具制造开辟了一条新的技术途径。 基于快速原型的快速制模技术因起步不久,还正处于发展阶段,应用于实际生产中还面临许多挑战,其中突出的问题就是基于离散累加原理制造原型的表面及尺寸精度、综合机械性能难于满足高精度、高表面质量的耐久模具的制造要求,各工艺过程之间尺寸的传递规律尚不明确等,本文就是针对快速制模尺寸精度方面问题进行研究和探讨的。 本文通过对快速制模与精密铸造结合的工艺进行分析对比,并对采用陶瓷型精密铸造来快速制模的工艺过程进行了探讨,总结了陶瓷型精密铸造工艺过程中影响尺寸变化的因素。 基于RP的陶瓷型制模方法属于精密铸造范畴,而金属凝固过程温度随时间和空间急剧变化,材料热物性参数也随温度变化,同时还存在相变,是属于典型的非线形瞬态热传导问题。虽然凝固过程中的温度场和应力应变场是双向耦合的,但由于应力应变场对温度场的影响非常小,可以忽略不计。基于这一思想,有效、合理地简化了有限元的求解模型,并建立了有限元分析精度控制系统。 在模拟计算时本文采用ANSYS的热.结构耦合模块,利用间接求解法,建立了凝固过程温度场及应力应变模拟分析,通过对不同长、宽的模型进行模拟得到铸件尺寸收缩量及收缩率,为复杂的凝固过程中温度及尺寸变化提供了理论依据和指导,给快速制模的尺寸控制提供了可靠的补偿依据,最终得到满足尺寸精度要求的制件。