非线性概率下的大数定律及相关问题

来源 :山东大学 | 被引量 : 0次 | 上传用户:snowdrangon
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现代概率论的完整公理化体系是在测度论的基础之上建立起来的,其中很多构造性质依赖于概率测度的可加性及连续性.非线性概率一般指容度(capacity),即不满足可加性的单调集函数.1953年,为了研究势能理论及统计力学中的问题,Gustave Choquet[12]提出了关于容度的Choquet积分,并创立了Choquet理论,这是非线性概率理论的第一个奠基性成果.同在1953年,Lloyd Shapley在研究博弈问题时也对容度的性质进行了探讨.作为合作博弈论及经济学领域的重要成果之一,Shapley[53,54]指出凸博弈具有非空的核,而一个凸博弈实际上可以抽象为一个supermodular容度.随着决策理论,现代经济学及金融学的发展,人们发现很多不确定性现象无法用经典概率模型进行刻画,这就促使数学家们在非线性概率领域不断进行研究和探讨,并取得了很多进展,如Schmeidler[55,56],Gilboa[32,33],Denneberg[22],Ghirardato[34],Epstein[25,26]等.近年来,Peng[45,49]提出了g 期望及更一般的次线性期望的概念并在这一框架下取得了一系列成果,见Peng[46,48,50,51].不同于以往由测度构造积分的思想,Peng所提出的次线性期望的定义并不依赖于具体测度或容度,因为非线性期望不一定能由相应的非线性概率唯一确定(见[4],[13]),所以Peng的工作无疑是为非线性概率理论开辟了一条新的研究途径.基于Peng的工作,Chen,Epstein[6]还发现了g-期望与资产定价理论之间的联系,由此解释了资产定价中的不确定性问题及Allais悖论,在经济学界及数学界产生了深远的影响.现在,非线性概率及期望理论不仅在经济,统计甚至量子力学等领域得到广泛应用,更是作为描述金融衍生品风险行为的有力数学工具而获得了大量关注.随着非线性概率应用的发展,对非线性概率理论体系的完备化也显得愈发重要.在经典概率论中,极限理论部分占据着核心地位,而大数定律和中心极限定理可以说是其中最具代表性的结果.大数定律作为描述大量重复试验中实验结果稳定性的规律,最初作为一种自然规律被人们所发现和接受.在历史上第一次用数学语言将其抽象化并作为极限定理给出严格证明的是Jacob Bernoulli,他所得到的大数定理也被称为Bernoulli大数定律(准确来讲应称为大数定理,但人们仍习惯称之为大数定律).Bernoulli之后还有很多数学家为大数定律理论的发展与完善做出了卓越贡献,如Chebyshev,Markov,Borel,Cantelli,Kolmogorov及Khinchin等.在非线性情形,很多极限定理的形式及证明方法都与经典情形不同.比如在经典概率论中,一个同分布且期望有限的随机变量序列{Xn}n≥1被称为服从弱大数定律,如果(?)Khinchin大数定律(大数定理)表明如果上述{Xn}n≥1,是独立的,那么式(0.1)成立,即独立同分布且期望有限的随机变量序列服从弱大数定律.在容度情形中,我们称在容度v下同分布的随机变量序列{Xn}n≥1服从Choquet期望意义下一般形式的弱大数定律,如果{Xn}n≥1的平均值序列依容度v收敛于Choquet期望区间,即(?)其中μ=Cv[X1]∧(-Cv[-X1]),μ=Cv[X1]∨(-Cv[X1]),Cv[·]表示·关于v的Choquet期望.在一些特殊情形,比如我们所考虑的容度v有某种具体表示时,该收敛区间可以取得更小.特别地,当v是一个概率测度时,Cv[X1]=-Cv[-X1]=Ev[X1],式(0.2)退化为式(0.1)的形式.近年来很多数学家引入了新的概念及思想来研究非线性情形下的大数定律,给出了不同框架下的不同形式的大数定律.如Marinacci[41],Maccheroni与Marinacci[40]给出了totally monotone容度下的强大数定律,Peng[49],Chen[5],Hu与Chen[9]给出了次线性期望空间上几种不同形式的大数定律,Chen,Wu及Li[11]给出了上-下概率情形的强大数定律等等.受到以上研究的启发,本文对非线性概率及期望假设下的大数定律及相关问题做了进一步研究与探讨.概括起来,本文的主要结果及创新点如下:(i)给出了submodular(supermodular)容度下的弱大数定律.与Marinacci[41]中给出的弱大数定律相比,我们的定理不需假设样本空间是紧致空间,并且随机变量序列不必满足连续性及正则性.(ii)给出了submodular(supermodular)容度下的强大数定律.该成果是对Maccheroni,Marinacci[40]得到的totally monotone容度下的大数定律的的推广,并且我们不要求样本空间是polish空间,对容度及随机变量序列的连续性假设也有所不同.(iii)给出了上-下概率空间上一般形式的弱大数定律.上概率与下概率是具代表性的次可加容度及超可加容度,与以往的结果相比,我们的定理不需假设随机变量序列满足独立性,同时矩条件也是较为一般的一阶形式.(iv)给出了上-下概率空间上的两种特殊形式的大数定律.在(iii)的基础上加强控制条件,我们得到了比一般形式的弱大数定律更强的结果.其中一个结果与Peng提出的依分布收敛形大数定律的形式一致.(v)给出了次线性期望下的弱大数定律及其在风险度量中的应用.与以往的结果相比,我们的定理中不要求随机变量序列满足有限矩条件.本文分为三章,各章主要内容如下.在第一章我们将介绍容度及Choquet积分的基本性质,给出submodular容度下独立随机变量的卷积不等式,并证明submodular(supermodular)容度下的弱大数定律与强大数定律.为叙述方便,我们先给出一些基本概念.定义0.1.1给定Ω为样本空间,S c 2Ω是一个包含(?),Ω的集类.我们称定义在S上的集函数v是一个容度(capacity),如果v满足以下条件:(a)v((?))=0,v(Ω)= 1;(b)如果A,B∈S且A(?)B,那么v(A)≤v(B).若S对补运算封闭,v是S上的容度,则定义v的共轭容度为v(A):= 1-v(Ac),A ∈ S.定义0.1.2设v是S上的容度:X:Ω→R是一个映射,并且满足对任意α∈R,{w∈Ω:>α}∈S.定义X关于v的Choquet积分(或称Choquet期望)如下(?)一般用Cv[X]表示上述积分.当Cv[|X|]<∞时,称X关于v可积或Choquet期望存在.定义0.1.3设(Ω,F)是一个可测空间,v是F上的容度.我们称随机变量X,Y关于v相互独立,如果对任意A∈B0(R),成立v(X ∈ A,Y ∈ B)= v(X ∈ A)v(Y ∈ B).本章的主要结果是定理1.1-1.4.定理1.1为submodular(supermodular)容度下的一般形式的弱大数定律.定理1.1(LLN)设(Ω,F)是一个可测空间,(v,v)为F上的一对相互共轭的容度,其中v是从下方连续的submodular容度.令{Xn}n≥1为一列关于v独立同分布的随机变量,并且Cv[|X1|]<∞.记Sn:=∑i=1n Xi,那么对任意的ε>0,我们有(1)(?)(2)(?)(3)(?)在定理1.2中,我们给出非同分布情形下的弱大数定律.定理1.2(LLN)设(Ω,F)是一个可测空间.令(v,v)是定义在F上的一对相互共轭的容度,其中v是从下方连续的submodular容度.令{Xn}n≥1为一列关于v独立且Choquet期望存在的随机变量,记μi=Cv[Xi],μi=Cv[Xi].若{Xn}n≥1还满足那么对任意的ε>0,我们有在定理1.1中进一步假设随机变量序列是在v下拟必然有界的,我们得到一般形式的强大数定律,即下面的定理1.3.定理1.3(SLLN)在定理1.1的假设下,如果{Xn}n≥1还满足v-q.s.有界,那么我们有下面的定理1.4是一般形式的强大数定律在非同分布情形的推广.定理1.4(SLLN)在定理1.2的假设下,如果{Xn}n>1还满足v-q.s.一致有界,那么我们有(1)(?)(2)(?)(3)(?)在本文第二章中,我们介绍上-下概率与上-下期望,并给出几个新的概念.在该框架下我们证明几种不同形式的大数定律.与以往的结果相比,我们不要求随机变量序列满足独立性假设.定义0.2.1设(Ω,F)是一个可测空间,P是一族定义在F上的概率测度.定义F上的集函数V(A):= supp∈P P(A),v(A):= infP∈P P(A),A∈F.那么V与v都是F上的容度,并且相互共轭.我们称三元组(Ω,F,P)是一个上-下概率空间,V与v分别称为由P生成的上概率与下概率.以下假设上-下概率空间(Ω,F,P)是给定的,用L表示F-可测随机变量全体.定义0.2.2由P生成的上期望与下期望分别定义为E[X]:= supP∈P EP[X],ε[X]:= inf EP[X],X∈L.定义0.2.3设{Xn}n≥1为一列上期望存在的F-可测随机变量.我们称{Xn}n≥1是递归弱独立的,如果对任意n>1,有E[Xn|Fn-1]≤E[Xn],及ε[Xn|F-1]≥ ε[Xn].其中Fu= σ(X1,X2,…,Xn).在这一章我们先证明上-下概率下的一般形式的弱大数定律.定理2.1(LLN)给定(Ω,F,P).令{Xn}n≥1为一列递归弱独立的随机变量序列,并且满足(a)对任意n ≥ 1,E[Xn]=E[X1],ε[Xn]=ε[X1];(b)lim supn→∞E[|Xn|]<∞;(c)对任意正常数c,有令Sn:=Ei=1 n Xi,μ:=E[X1],μ:=ε[X1],那么对任意的ε>0,注意这个定理所给出的随机变量平均值序列的收敛区间比第一章中的区间更小,这是因为对满足Cv[|X|]<∞的随机变量X ∈L总成立Cv[X]≤ε[X]≤E[X]≤Cv[X],这里CV,Cv分别表示上概率与下概率对应的Choquet期望.若进一步假设E关于{Xn}n≥1满足时间一致性,则我们可以得到更强的结果,即下面的定理2.2.定理2.2(LLN)在定理2.1的假设下,如果E关于{Xn}n≥1是时间一致的,那么(1)对任意的x*∈[μ,μ]及ε>0,有(2)若有a,b∈R使得limn→∞ v(a<Sn/n<b)= 1,则必有[a,b](?)[μ,μ].该结果表明,区间[ε[X1],E[X1]]是使得随机变量平均值序列Sn/n依下概率v收敛的最小区间,并且该区间内每一点都是使Sn/n依上概率V收敛的极限点.在该定理的假设下我们还可以得到Peng-依分布收敛形式的大数定律,描述如下.定理2.3(LLN)在定理2.2的假设下,对任意函数φ ∈ Cb(R),我们有(?)本文第三章介绍由Peng提出的次线性期望空间,一致性风险度量等概念,并给出次线性期望下的弱大数定律及其在风险度量中的应用.与以往的结果相比,我们不再要求随机变量序列满足有限矩条件.定义0.3.1 设((Ω,F)是一个可测空间,H是由某些F-可测随机变量构成的线性空间.称H上的泛函E:H→R是一个次线性期望,如果对任意的X,Y ∈H,有(1)(保常性)E[c]=c,Vc∈R;(2)(单调性)X≤Y(?)E[X]≤E[Y];(3)(正齐次性)E[λX]=λE[X],λ≥ 0;(4)(次可加性)E[X+Y]≤+E[Y].此时我们称三元组(Ω,H,E)为一个次线性期望空间.定义0.3.2设E是一个次线性期望,E的共轭期望ε定义为ε[X]:=-E[-X],X∈H.E与ε诱导的容度分别定义为V(A):=E[1A],v(A):=ε[1A],A∈F.定义0.3.3(Peng-独立性)令X=(X1,…,Xm),Y=(Y1,…,Yn)是(Ω,H,E)上的随机向量.我们称Y独立于X,如果对任意φ∈Cl,Lip(Rm∈× Rn),有E[φ(X,Y)]= E[E[φ(x,Y)]x=X].我们称随机变量序列{Xn}n≥1(?)H是独立的,如果对任意n ≥ 1,Xn+1独立于(X1,…,Xn).定义0.3.4(Peng-同分布)设X为(Ω1,H1,E1)上的n维随机向量,Y为(Ω2,H2,E2)上的n维随机向量,n ≥ 1.我们称X,Y是同分布的,如果对任意φ∈Cl,Lip(Rn),有E1[φ(X)]=E2[φ(Y)].本章的主要定理如下.定理3.1(LLN)设{Xn}n≥1为一列独立同分布的随机变量,且满足lim n→∞·V(|X1|>n)= 0,那么对任意的ε>0,(?)。
其他文献
在介绍传统软件分层结构(环境层、组件层、组装层)的基础上,对区块链技术和传统软件技术组成上的区别和联系进行比较分析:区块链技术的应用层面和基础层面对应传统软件的应用软
<正> 要有成效地完成教学任务,必须正确选择和运用教学方法。常有这种情况,有的教师教学效果不太好,并不是因为他没有水平,而是由于教学不得法。"事实上,教学方法始终包括教
期刊
<正> 据考证,北回归线所经之地,不是浩淼之海洋,便是荒凉之沙漠,而在中国,北回归线穿过的从化等地,却是一片生机盎然的绿洲。在骄阳似火的五月,我们来到从化这个拥有温带雨水
本文所提及的"顿悟"美学思想在前人研究的基础上,进行概括和基础的论述,为品牌服装设计实践提供了理论指导。"顿悟"美学思想为品牌服装设计奠定了整体思维模式——破除执念,
本研究以湖北电视经济频道《经视直播》为个案,考察民生新闻与社会弱势群体的利益表达间的关联。研究表明,《经视直播》在受众指向上以弱势群体为主;在内容构成上关注弱势群
<正>在初中物理探究实验的教学中,如何处理好学生自主探究与学生学习能力差异的关系?如何有效地调控课堂,把握好"管"与"放"的分寸,避免实验秩序的混乱,使探究实验课上得更有
新制度经济学的一个基本理论观点是将制度变迁与组织创新视为影响经济增长的重要因素.本文借助新制度经济学的制度变迁理论,对改革开放以来中国农村各种微观经济组织的变革与
目的:通过成人埋伏阻生牙临床病例的分析,特别是2例典型病例的展示,阐明正畸与口腔的其它学科之间有着密不可分的关系。方法:矫治埋伏阻生牙成人患者34例,应用正畸、颌外及修
为探讨c -erbB癌基因家族 4基因扩增与乳腺癌病人临床病理分期的关系及该家族 4基因间的相互作用 ,应用差异聚合酶链反应技术检测 70例乳腺癌组织和癌旁正常乳腺组织中c -erb
静脉输液是临床上一种最常用的治疗手段,在各种给药途径中因疗效迅速且有效占有重要位置。因此,保护静脉,为长期穿刺创造条件是护理工作中应重视的问题。通过十几年的工作实践,总