近群融合环K(Q8,n)的不可约Z+-模的分类

来源 :扬州大学 | 被引量 : 0次 | 上传用户:lele3383
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近群融合范畴在融合范畴理论中是一类特别重要的融合范畴.近群融合环这一概念来源于融合范畴的Grothendick环.J.Siehler最先引入近群融合环这一概念,Ostrik证明了给定的一个有限秩的Z+-环A上的互不等价的不可约Z+-模的个数是有限的.本硕士论文利用近群融合环上的不可约Z+-模的分类方法,明确刻画出K(Q8,n)上的所有不可约Z+-模的分类,其中Q8是由i,j生成的二元八面体群.全文分为以下四部分:引言部分介绍了本论文的研究背景、研究现状、研究方法与研究结果.第一章第一节介绍了 Z+-环与Z+-模的具体定义;第二节介绍了不可约Z+-模的判定定理;第三节给出了近群融合环上的不可约Z+-模的秩的范围,近群融合环是整情形和非整情形时的判定定理以及关于正矩阵的Frobenius-Perron定理;第四节介绍了近群融合环上不可约Z+-模的直和项个数;第五节给出了近群融合环上不可约Z+-模一般分类方法,先给出非整情形的近群融合环上的不可约Z+-模的分类方法;后给出整情形的近群融合环上的不可约Z+-模的分类方法.第二章作为应用给出了具体的近群融合环K(Q8,n)上的不可约Z+-模的明确刻画.讨论出了K(Q8,n)是整情形的近群融合环时,n=2或n=7.当n=2时,直和项个数小于等于3;当n=7时,直和项个数小于等于9.通过手动放缩和程序运算得到K(Q8,2)有87个不可约Z+-模,K(Q8,7)有277个不可约Z+-模.第三章讨论出当n≠2,7时,K(Q8,n)是非整情形的近群融合环,给出K(Q8,n)上(其中n≠2,7)的不可约Z+-模一般构造方法;通过给n赋值非负整数,代入定理中,可以得到具体K(Q8,n)上的全部不可约Z+-模;并在最后我们计算出在赋值n=0,1时,K(Q8,0)有23个不可约Z+-模,K(Q8,1)有16个不可约Z+-模.
其他文献
在人类和动物中滥用抗生素药物已经使抗生素成为环境尤其使水污染的一种危险污染物,新型光催化剂材料的开发和应用是人们现今迫切关注的热点。铋基半导体光催化剂因为对太阳光中可见光部分具有良好的响应并且对自然环境具有绿色可重复性等特点而受到人们的广泛关注。但是,单一的铋基半导体光催化剂因为光生电子与空穴对的快速复合,严重约束了铋基半导体在光催化领域的应用。为了解决上述问题,本论文制备了铋基半导体复合光催化剂
学位
粪口传播作为传染病一种常见的传染渠道,已经引起了很多学者的重视,由于病毒可在粪便中存在数周,粪口传播疾病极其容易在某一地区暴发,家庭内部和密切接触者均有患病的危险,从而形成地方病,目前仍缺乏有效药物对症治疗.因此,研究病毒的传播规律和扩散机制,进而促进粪口传播疾病等地方性传染病的预防和治疗是十分重要和必要的.本文以反应扩散方程为基础,对演化区域上粪口传播疾病模型的动力学行为进行研究,分别在增长区域
学位
幼儿园教师观察与解读儿童游戏的能力,是新时代幼儿园教师应具备的核心素养,是“放手游戏、发现儿童”的重要途径。对幼儿的观察能够体现教师对幼儿的关注与尊重,体现当下合格幼儿园教师的专业理念与能力,以及作为一名有思想、会思考、能行动的专业教育工作者的独特视角。从现阶段幼儿游戏观察的弊端着手,重新梳理对幼儿游戏观察的认识,并找到观察与解读幼儿游戏的策略,从而帮助教师在自主游戏中有计划、有目的地观察不同幼儿
期刊
现如今,随着化石煤炭能源被快速消耗,并且在使用过程中产生较为严重的环境污染。各国迫切需要寻找高效的新型能源来替代传统能源以减少二氧化碳排放。氢能因其高能量密度、环保等优势的吸引了科学家的注意。电催化水分解作为制备氢气的重要手段,一直是科学家研究的重点。但是在现实生产中用于水分解的电催化剂多为贵金属,高昂的价格极大地限制其电催化产氢产业的发展。因此我们在本文中制备出一系列廉价的铁系金属间化合物,用于
学位
犹豫模糊语言信息能够灵活、全面地表达决策者的定性决策信息,随着网络技术的发展和社会需求的推动,不同文化和教育背景的决策者可以使用不同粒度的语言术语集参与到决策过程中.本论文提出了多粒度犹豫模糊语言术语集的融合与转换方法,并在多粒度犹豫模糊语言信息环境下建立了基于最小调整量的个性化动态反馈模型.本文结构如下.第一章,介绍多粒度语言信息融合和群体共识问题的研究背景、发展状况及犹豫模糊语言术语集、多粒度
学位
分数阶微分方程作为分数阶微积分理论中的一门分支,与其它各种类型的方程相比,在构建数学模型这一方面更具有优势.该类型的方程通常是在空气动力学、流体流动、复杂介质电动力学、控制理论、信号和图像处理模型等的研究中推导出来的,并能够用来描述各种实际问题.因此,分数阶微分方程在各个领域都得到了一定的应用且受到了学者们的广泛关注和研究.本文一方面主要研究了一类非线性分数阶微分方程的边值问题,在区间[0,1]上
学位
非线性系统的同步问题在许多领域中都有着广泛的应用,一直引起人们的广泛研究兴趣.但从现有的研究成果来看,大多数文献只研究了这类系统的渐近同步行为,即系统的状态在无限时间内实现同步.另外在实际工程中人们希望能够尽可能快的实现同步,甚至是在有限时间内同步.例如,在混沌保密通讯网络中,基于安全考虑,通常要求主从网络的同步,并要求保证解码信息在较短时间内被发送而不被泄密.因此,人们提出了有限时间稳定以及有限
学位
“立德树人”是高等学校的重要职责和使命所在。大学生思想政治教育是“立德树人”的重要载体。大学生思想政治教育包括显性教育和隐性教育两种方式。所谓隐性思想政治教育是指运用多种喜闻乐见的方式,寓教于观、寓教于乐、寓教于文、寓教于游等,让教育对象在潜移默化中接受教育。相对于显性思想政治教育方式,隐性思想政治教育方式将教育目的和教育内容隐藏在教育载体中,运用渗透式、潜隐式的教育方法,影响教育对象的思想、情感
学位
随着工业化的发展,大气中二氧化碳(CO2)的浓度越来越高,将导致全球变暖,海洋酸化,威胁所有生物的安全。利用二氧化碳作为可再生的碳源生产高价值的燃料和化学品引起全球的广泛关注,其中催化二氧化碳加氢是最现实和最有吸引力的选择。金属氢化物可以提供负的晶格H,在氢化过程中表现出高的选择性与催化活性。此外碳酸盐可视为CO2的固态储存形式,是一种丰富而有用的资源。因此碳酸盐的利用被认为是CO2的间接利用。我
学位
天然胶乳海绵是一种多孔的低密度材料,常被制成胶乳床垫、枕头等生活家居用品。硫化是橡胶分子链在一定温度、压力条件下与硫化剂、促进剂等发生化学反应,由线性高分子转变为三维网状结构的过程,能够赋予天然胶乳海绵优异的拉伸强度、回弹性、缓冲性能等力学性能。硫化促进剂是硫磺硫化体系的重要组成部分,能够提高硫化效率、改善胶乳海绵制品性能。但很多促进剂存在水溶性差、不易分散、生物毒性等缺点,使其应用受限。而环糊精
学位