双响应“核—壳”型磁性纳米粒子用于非小细胞肺癌铁死亡实验研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:littlewolfwolfwolf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于各种有机、无机的纳米药物递送系统在癌症靶向治疗和其他方面研究中获得越来越多的关注并在实际中被广泛应用。在药物递送领域的研究中,与有机纳米材料相比,无机纳米材料具有更加易于控制、修饰和联合治疗等优势。更重要的是,无机纳米材料中的多组分“核-壳”结构可以通过修饰不同的基团实现多功能特性,因此“核-壳”结构纳米复合物在药物靶向递送、生物医学成像以及精确治疗等领域具有重要的应用价值。同时多组分“核-壳”型纳米材料已被广泛研究并应用于生物成像、传感系统、生物催化和药物递送等领域。铁死亡是于2012年被发现的一种有潜在应用价值的细胞死亡途径。它绕过了细胞凋亡,克服了肿瘤的多药耐药性。基于这种新发现的细胞死亡途径,我们制备了负载索拉非尼(Sor)并具有p H和氧化还原双响应的多功能磁性纳米粒子(FMMHG/Sor)用于癌症的铁死亡治疗。FMMHG/Sor纳米粒子以Fe3O4为核心实现磁靶向效果并为铁死亡提供了足够的亚铁离子。介孔有机硅(MON)被覆盖在Fe3O4核心的表面,形成"核壳"状结构。MON中包含具有氧化还原响应的二硫键,在MON的介孔中负载Sor协同诱导铁死亡。Mn O2壳层结构随后被修饰在MON的表面用于封闭介孔,并且Mn O2在低p H下可将H2O2分解成O2,以促进药物释放。葡萄糖氧化酶(GOD)和透明质酸(HA)最后修饰到纳米粒子上。其中GOD能够催化体内葡萄糖变为H2O2,H2O2可以与Fe2+反应生成大量羟基自由基(·OH),即芬顿反应。·OH协同Sor通过抑制GPX4的表达诱发铁死亡。透明质酸(HA)保护纳米粒子不被免疫系统清除,并且研究表明HA可以靶向肿瘤细胞表面的CD44。材料表征结果显示,FMMHG/Sor的平均粒径为120nm左右,各成分均被良好地加载到纳米粒子上。此外,本论文以A549细胞模型对FMMHG/Sor纳米药物进行了细胞学评价和体内抗肿瘤治疗评估。结果表明FMMHG/Sor纳米药物对肿瘤部位有磁靶向效应并对癌细胞有主动靶向性。FMMHG/Sor纳米药物在肿瘤部位微酸性环境下能够释放Sor并诱发癌细胞铁死亡,有效地杀伤肿瘤细胞。最后,对FMMHG/Sor纳米药物进行体内抗肿瘤治疗评估,结果显示,FMMHG/Sor更容易在肿瘤部位附近聚集,辅助磁铁实现了更好的治疗效果。另外,肿瘤组织切片中出现了显著的铁死亡表型特征,而正常组织切片中未显示出损伤。
其他文献
衰老是每个生命体都必须经历的过程。衰老造成的脑神经损伤不仅影响着老年人的生存质量,同时也带来了一系列严重的医疗和社会问题,因此缓解衰老引起的脑神经损伤已成为老年医学的重要研究课题之一。有研究报道黑果花楸果实含有大量多酚类化合物,具有一定的抗氧化能力。因此,本研究旨在探究黑果花楸果汁对神经细胞氧化损伤的保护作用,实验研究内容及结果具体如下:首先,通过D-半乳糖诱导小鼠建立衰老模型,采用Morris水
学位
蛋白质药物是一类独特且用途广泛的生物治疗药物,不仅具有高生物活性,而且具有极强的特异性。然而,具有细胞内靶标的抗肿瘤蛋白质的临床转化受到其在体内快速降解、细胞膜穿透性差等限制的严重阻碍。特别是蛋白质固有的表面不同电荷性及大分子亲水性,给寻求蛋白质跨细胞递送带来了极大的挑战。因此本论文通过对蛋白质表面氨基的羧基化来单一化蛋白质表面的复杂电荷,设计胞质内还原响应的蛋白质递送体系,为蛋白质药物的精准递送
学位
有机磷农药,是目前使用最为广泛的一种农药,然而其残留也导致了严重的食品安全问题,因此发展有机磷农药残留的实时快速检测意义重大。目前常用的有机磷农药检测方法有色谱分析法、光谱分析法、酶抑制法等,但它们大多需要训练有素的专业人员与昂贵的仪器和设备,不适合进行现场检测。因此,本论文应用免标记液晶传感技术,发展液晶传感器用于有机磷农药的实时快速检测。本文应用金属离子为探针,基于有机磷中存在的P=O或P=S
学位
自从基因治疗被提出以来,为很多疾病的治疗提供了全新的治疗理念,为很多疾病的治愈带来了希望。基因治疗,不同于传统小分子药物和抗体药物在蛋白质水平进行调控,基因治疗能够在基因水平对疾病进行干预,从而达到治疗效果,因此对疾病的治疗具有根本性。然而,基因治疗面对的首要问题就是基因的递送问题,最开始使用的病毒载体虽然具有较高的转染效率,但也存在着极大的安全隐患。因此开发非病毒载体成为基因治疗的关键,然而非病
学位
传统农药的长期不合理使用引起了环境和抗性等问题,创制高选择性的农药是解决这一问题的有效途径之一。几丁质酶Chi-h仅存在于鳞翅目昆虫中,并且对其生长发育关键,因此已经被证实是开发高选择性农药的理想靶标。然而,目前尚未发现该酶的选择性抑制剂。另一方面,RNA干扰(RNAi)因其独特的作用机制,本身就是开发高选择性农药的技术手段。然而,RNA农药存在口服效果差的问题。基于以上问题,本研究一方面以几丁质
学位
组织工程将工程学和生命科学的原理应用于开发生物组织的替代品,以恢复、维持或改善组织的功能,生物材料是组织工程的核心,需要具有良好的生物相容性,体内低免疫特性。随着对医疗标准的提高,还希望材料具有适当的降解速率,以及降解产物可被人体吸收从而避免二次手术对患者的伤害。相比于惰性材料以及合成高分子,天然生物材料的优势愈发被研究者所关注,其中丝素蛋白材料具有组织工程材料的巨大潜力。本研究工作中制备了一种丝
学位
血液净化技术是为了治疗某种疾病或减轻某些症状,通过降低血液中对机体有害的物质浓度,进而达到减轻该有害物质对机体伤害程度的目的,其中,血液灌流技术是血液净化技术的重要组成部分,因其能够清除中、大分子毒素而逐渐成为一种主流的临床治疗手段。血液灌流技术的核心是血液灌流材料,目前常见的血液灌流材料包括活性炭类材料、多糖类材料以及树脂类材料,其中活性炭类材料易脱落且选择吸附性差,多糖类材料机械强度差且改性后
学位
在植物生命活动中,lncRNA广泛参与植物生长发育和胁迫过程,已成为全球基因调控、发育和环境响应的重要研究课题,其中lncRNA与蛋白质的相互作用在植物免疫和生命活动中发挥着重要的调控作用。由于实验室方法耗时耗力,研究人员逐渐开始利用计算机技术辅助预测,为实验室方法提供帮助和支持。然而,与动物领域相比,在植物中的研究还不成熟。由于缺乏实验验证的相互作用数据,植物数据集中已知相互作用关系的样本与未知
学位
抗生素为畜牧养殖业的发展做出了贡献,但随着行业和技术的发展问题也随之而来,抗生素的问题主要为增强病原菌的耐药性、造成抗生素残留、损害动物免疫功能、和微生物环境破坏。而中草药是最佳的抗生素替代品,天然无毒,甘草便是其中之一。甘草中的甘草黄酮具有抗菌、抗病毒、抗炎等作用,具有一定的促进动物生长功效,有着广阔的前景和巨大的应用潜力。甘草在工业生产中,经过提取后会剩余大量的甘草残渣,由于甘草酸、甘草次酸和
学位
三酰基甘油(Triacylglyceol,TAG)在植物体内的生物合成主要发生在内质网中,该过程涉及脂肪酸底物从叶绿体到内质网的转移过程。微藻叶绿体定位的脂肪酸转运蛋白(FAX1和FAX2)和一种内质网定位的ATP结合型转运蛋白(ABCA2)最近被报道参与脂肪酸转运对脂质合成起重要作用,但两种脂肪酸转运蛋白对TAG的合成是否具有协同作用及其调控机制至今还不清楚。本研究首先构建了FAX1/FAX2融
学位