论文部分内容阅读
高性能金属构件的制造是重大装备制造业基础,对关键金属构件实现增材制造和再制造有助于我国的制造业转型升级和资源集约利用。激光熔覆技术是一种利用高能激光束将粉末熔化并在基体表面凝固成形的先进制造技术,是激光增材制造和激光增材再制造技术的基础。传统激光熔覆受材料和设备的限制常存在气孔、裂纹、应力集中等现象,多能场复合激光制造已成为重要趋势。为此,本文在国家自然科学基金(51705460)和浙江省重点研发计划(2019C04004)的资助下,将超声振动引入激光熔覆过程,针对超声能场在金属成形中的作用机制,通过数值模拟技术和实验手段开展研究,为超声振动辅助激光熔覆中的控形控性提供新的思路。本文首先分析了空化泡在熔体中的受力状况,开展了单空化泡形态演变数值模拟研究,对声空化在熔池中的作用机制进行了预测。然后,采用COMSOL Multiphysics多物理场仿真软件通过流体传热、层流、变形几何和压力声学模块建立了超声振动辅助激光熔覆数值模型,开展了数值模拟研究。最后,进行了超声振动辅助激光熔覆316L不锈钢实验,结合数值模拟得到的凝固特征参数和金相组织对超声能场在激光熔覆中的作用机制进行了研究,采用维氏硬度计和电化学工作站对超声振动辅助激光熔覆成形熔覆层的性能进行了测试。本文的主要研究工作和研究结论如下:(1)建立了超声振动辅助激光熔覆多物理场数值模型。通过压力声学计算得到的熔池声压梯度以源项方式引入到Navier-Stokes方程,将声场、温度场和流场耦合,并结合实际设置了模型的边界条件和材料热物理参数,进行了数值模拟研究。(2)超声振动对激光熔覆层几何形貌有显著影响。施加超声振动后熔高减小、熔宽增加,熔覆层润湿角减小,且在一定范围内随着超声功率的增加这种趋势更加显著。润湿角的减小可以提高熔覆层外轮廓面上单位曲面吸收的能量密度,同时也使得熔体更好的填充熔覆层底部角落,降低了多道搭接时的气孔发生率。(3)根据声空化模型预测可知:空化泡在溃灭瞬间会产生指向熔池边缘糊状区的射流,射流会对初生枝晶以及刚形成的固态结晶网产生冲击压力,经分析可知合适的超声强度能够造成初生枝晶的折断或固态结晶网的破碎,形成许多细小晶粒,细小碎晶弥散分布在熔池中成为形核点使得晶粒细化。此外,通过实验得到的金相组织明显观测到中部粗长树枝晶变得短小且无序生长。(4)超声振动辅助激光熔覆技术可以适当提高熔覆层的性能。在本文使用的工艺参数下相较于未施加超声振动得到的熔覆层其显微硬度在功率比为45%提高最多,提高了23.26%;耐蚀性实验结果表明:在合适的超声功率作用下涂层的自腐蚀电位提高、腐蚀电流密度降低,表明其发生腐蚀的倾向性减小,腐蚀速率减缓。分析其原因为超声振动使得冷却速率加快,造成晶粒细化使得熔覆层性能得到提高。