【摘 要】
:
随着时代的发展,以糖尿病为主的慢性病对人们生活的影响愈来愈严重,患病人数居高不下,并发症发生频频。在医疗领域,机器学习技术已在解决医疗难题上崭露头角,可以辅助进行疾病预警、病情分析等,但是在糖尿病防控及并发症治疗方面应用较少,机器学习模型在糖尿病预测及复杂场景下的效果略显不足。基于此,本文将机器学习技术用于糖尿病及其并发症诊治智能服务上,首先基于用户身体数据信息感知用户是否患病;其次在患病基础上实
论文部分内容阅读
随着时代的发展,以糖尿病为主的慢性病对人们生活的影响愈来愈严重,患病人数居高不下,并发症发生频频。在医疗领域,机器学习技术已在解决医疗难题上崭露头角,可以辅助进行疾病预警、病情分析等,但是在糖尿病防控及并发症治疗方面应用较少,机器学习模型在糖尿病预测及复杂场景下的效果略显不足。基于此,本文将机器学习技术用于糖尿病及其并发症诊治智能服务上,首先基于用户身体数据信息感知用户是否患病;其次在患病基础上实现对并发症的预测,防控病情恶化;最后研究医药问答服务模型,为用户提供智能服务,动态调控身体状况。本文具体工作有以下三个方面:(1)提出一种自适应权重集成学习的糖尿病预测模型,该模型在集成学习投票法的基础上增加了一个神经网络层,使得模型能够根据基本分类器的特点自主调节分类器权重,实现对不同分类器性能的最佳调控,从而提升糖尿病预测效果。(2)提出一种基于深度学习的糖尿病并发症预测模型,该模型以BP神经网络模型为基础,为解决学习率对模型收敛的影响,提出一种自适应学习率算法,使模型收敛时具有更少的迭代次数,同时能更容易地探索到最优解,进而提升糖尿病并发症预测模型性能。(3)提出一种基于知识图谱的糖尿病问答服务模型,该模型在糖尿病预测和并发症预测的基础上,通过构建医药知识图谱将医药信息整合为有利于问答服务的图数据,同时基于Word2Vec词向量的问句分类模型,对问句核心进行准确理解,从而在医药知识图谱中检索到最佳答案,实现对用户糖尿病诊疗的最优服务。
其他文献
作为应对移动互联网和海量物联网日益增长的接入需求最具前途的技术之一,非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术近年来受到了积极的关注。与传统的正交多址接入(Orthogonal Multiple Access,OMA)技术相比,NOMA系统具有更高的频谱效率、更快的传输速率以及保障更多的用户接入。NOMA主动引入用户间的干扰,其高频谱效率是通过增加
智能反射面(intelligent reflecting surface,IRS)是一种新兴的,很有前途的B5G(6G)无线通信技术。它是由大量无源的或者有源的反射元件组成的大型二维阵列,可以通过改变信号的相位和幅度改善信号传输的环境,减少信道干扰。毫米波属于甚高频段,单跳通信距离较短,因此多跳的接力通信是毫米波通信的研究前景。IRS可以有效地控制信号的传递途径,包括相位,振幅,频率甚至偏振,而无
大数据时代,充足的训练数据给机器学习带来了巨大的性能提升。大量的数据也意味着需要大量的人工标注,然而人工标注往往耗时耗力,这催生了迁移学习(Transfer learning,简称TL)的发展。迁移学习旨在借助相关源域的知识辅助目标域学习,以解决目标域数据或标记稀缺的问题。域适应(Domain Adaptation,简称DA)学习是迁移学习中的重要研究方向。域适应方法通常利用基于距离或者对抗的方式
雾霾天气下,由于空气中存在大量漂浮着的粒子,光线传播过程中与这些悬浮粒子相互作用,使得光线发生散射,最终到达成像设备的场景光信息受损。所以拍摄得到的图像存在对比度较低、清晰度低、细节丢失等问题,影响后续对图像的进一步处理应用。因此,对有雾图像进行去雾工作,使其能够应用于高级别的图像处理任务。本文基于深度学习对单幅图像去雾算法进行了研究,主要工作如下:(1)针对基于深度学习的非端到端图像去雾算法对模
随着社会经济的不断发展和人民消费水平的提升,消费者对物质生活水平的需求不再仅仅体现在数量上,同时对商品的质量也有了更高的要求。供应链溯源技术是保障商品质量的首要方案,但在传统中心化存储的供应链溯源系统中存在信息孤岛、恶意企业对溯源信息进行修改不易被察觉和溯源难的问题。区块链具有去中心化、不可篡改性和可追溯性等特点,这些特点使其在商品溯源方面具有不可替代的优势。然而由于供应链溯源管理的参与方较多且存
随着移动通信与多媒体技术的发展,多媒体服务正在从传统单一、平面、应答式的内容服务,向沉浸、立体、交互式的技能服务演进。触觉互联网在传统多媒体通信的基础上,加入新的触觉类媒体,实现了物体感知模式的进化,能够在远端敏锐地感知细微的变化,提升用户服务体验。然而,触觉互联网对通信环境提出了更高的要求,网络延迟必须低至毫秒级别,网络通信可靠性必须至少高达99.9999%。如何保障超可靠低时延通信成了触觉互联
过去几十年间,量子纠缠和Bell非局域性这种对称量子关联,引起了人们的广泛关注,并取得了丰硕的研究成果。然而,直到最近几年,量子导引这种非对称量子关联才开始进入人们的视野。它是一种介于量子纠缠和Bell的非局域性之间的量子关联形式。由于其独特的不对称特性,使得它在量子通信、量子计算和量子密码等许多领域发挥着不可替代的作用。然而,在量子领域,一个不可避免的问题是,量子系统会与周围环境彼此耦合,导致量
随着移动通信网络和各类智能传感器的飞速发展,人们对沉浸式交互体验的需求日益增长。触觉作为重要感知模态,是提升用户整体沉浸感、流畅感、参与感的关键。然而,传统的音视频传输方案无法应对突变的触觉信号和其超高的低延迟要求。因此,如何设计一个通用的多模态传输方案,能自适应传输过程中环境、信号的实时变化,实现对数据流的实时控制以适应各种远程操作场景是亟待解决的问题。此外,参考多模态深度学习领域研究成果,将多
电力行业是我国国民经济发展的基石,而其中火力发电占总发电量的绝大部分。但在国家全面倡导节能减排的大环境下,火力发电过程中会生成以NOx为主的污染物,对环境污染最大,且最难以处理。因此建立火电厂的NOx排放模型能够促使企业严格执行环保政策,,实现经济高效可持续发展。在已有的NOx排放建案例中,以支持向量机为代表的一系列NOx排放建模方法取得了优异的建模效果。支持向量机在统计学习理论基础上发展的一种机
网络控制系统(Networked Control System,NCS)是由通信网络组成闭环回路的空间分布式控制系统,因兼具强大的灵活性、发展的便捷性和广泛的兼容性,在不同领域的实际控制系统得到了广泛应用。然而,网络作为一种可靠性较低的通信介质,传输过程中多条信号在同一时间段内集中通信,易受到网络攻击及发生拥塞滞碍,严重时造成网络时延、丢包、无法正常运行等一系列问题。因此,NCS通信过程中的资源受