论文部分内容阅读
人脸表情识别技术是人工智能领域新兴的一个研究方向,它在智能化的人际交互中具有广阔的应用前景。同时,该技术还被广泛应用在交通、医疗和公共安全等方面。近年来,人脸表情识别技术受到了更多学者的关注,成为了人工智能领域的又一研究热点。因此,对人脸表情识别技术的研究具有重要的理论意义和实际的应用价值。人脸表情识别技术主要包括图像预处理、特征提取和分类识别。在人脸表情图像预处理中,针对人眼定位的问题,给出了一种基于Sobel边缘提取的人眼定位新方法。主要包括眼部粗定位、眉眼分离和精确定位三个步骤。眼部粗定位是在对图像进行中值滤波和归一化预处理后,根据先验知识来完成。眉眼分离是利用灰度积分投影曲线来确定眉眼分离线,然后进行分离。眼睛的精确定位是通过对眼睛区域应用Sobel算子提取边缘后,根据二值图像的边界来确定精确的位置。该方法与Hough变换圆检测法和传统模板匹配法相比较,在计算时间上具有明显优势,适合应用于实时人脸表情识别系统中。针对特征提取,给出一种应用Gabor小波变换和非负矩阵分解相结合的特征提取方法。结合Gabor小波变换的特性,设计了相应的Gabor滤波器组,利用它对面部信息区域进行滤波处理,获取不同的子图信息。接着,对各个滤波器滤波产生的子图分别进行非负矩阵分解,实现数据的降维及特征的选择。针对分类识别,设计了基于最近邻思想和概率统计原理的两级分类模式。从各个滤波器获得的子图信息为输入信息,将其输入作为第一级分类器的最近邻分类器,对第一级分类器的输出结果进行概率统计,以实现第二层分类,第二层分类器的输出结果作为最终的识别结果。两级分类模式使每幅图像实现了多次判别,降低了错误分类的可能性,提高了算法的鲁棒性。在MATLAB编程环境下,采用日本女性人脸表情数据库(JAFFE)进行了实验测试。实验结果表明了本文所给方法的有效性。除此以外,还将所给出的方法应用于小样本下的人脸识别中,并在Yale人脸库中进行了实验,结果显示该方法也适用于小样本的人脸识别技术中。