论文部分内容阅读
开展农民现代远程教育是提升农村信息化水平、消除数字鸿沟、构建农民终身教育体系的一项重要战略部署。目前,随着计算机和通信技术的快速发展,网络学习资源增长迅速,农民在远程教育学习过程中,面临着―信息迷航‖以及―资源过载‖问题,主要原因是现有的远程教育系统不能有效的理解教学资源的语义信息,不同结构的教学资源未能够有效的组织成有效的知识。另外,系统无法为不同学习需求和背景的用户提供符合其偏好特征的学习资源。如何从大量的学习资源中快速、有效地获取个性化学习信息已经成为学习者迫切的需要。本文主要探讨研究了农民现代远程教育个性化学习关键技术,研究采用理论建模、数学分析、实验仿真验证和实际部署等方法。论文在个性化学习关键技术理论研究和实践探索方面,主要取得了以下几方面成果:(1)提出了农民远程教育个性化学习系统框架。以远程教育教学资源、农民学习行为和教学资源属性信息为依据,以计算机和信息技术手段为支撑,提出了髙效的农民远程教育个性化学习系统架构。(2)开发构建了农民远程教育视频教学资源领域本体。研究并优化领域本体构建方法,开发构建的视频教学资源领域本体为用户兴趣模型提供可靠的语义知识支持。(3)研究构建了基于用户属性信息和教学资源领域本体的个性化用户兴趣模型,有效缓解了用户学习行为变化预测不准、算法空间复杂度高以及影响用户学习行为分析不准确全面等问题。(4)提出了基于用户属性信息及其兴趣主题联合相似度的协同过滤推荐算法,缓解了个性化系统中存在的稀疏性以及新用户问题。开展了基于序列分析的个性化推荐算法研究工作,通过实验找出最小支持度阈值设置范围在0.003%至0.004%之间,能兼顾算法的准确率和覆盖率。(5)研发了农民远程教育个性化学习系统原型,在实践中验证了领域本体、用户兴趣模型和个性化推荐算法等关键技术和方法研究理论的有效性。研究创新之处主要体现在:在研究构建的远程教育视频教学资源领域本体基础上,提出了基于用户属性信息和教学资源领域本体的个性化用户兴趣模型,解决了用户兴趣模型缺少层次概念语义问题,模型具有较好的扩展性和自我调节能力。在教学资源领域本体和用户兴趣模型研究基础上,提出了基于用户属性信息和兴趣主题联合相似度的协同过滤推荐算法,有效缓解了评分矩阵的稀疏性、个性化推荐算法的时间复杂度高等问题。