论文部分内容阅读
分数微积分的出现已有300多年的历史,它的应用领域很广,包含各种材料的记忆、力学和电特性描述、地震分析、电力分形网络、分数阶正弦振荡器、机器人、电子电路、电解化学、分数电容理论、电极电解质接口描述、分形理论,特别是描述自相似和多孔结构的动态过程、分数阶控制器设计、弹粘性系统和柔软构造物体的振动控制、分数阶生物神经元和概率论等。分数阶微分方程的特点是含有非整数阶导数,能非常有效的描述各种各样的物质的记忆和遗传性质,在工程,物理,金融,水文等领域发挥越来越重要的作用。这篇文章主要由下面几个部分组成。绪言部分介绍了关于分数阶微积分的一些预备知识,给出了分数阶微积分一些基本定义和性质。接下来的第二章中,首先从基本的分数阶常微分方程出发,对Lubich提出的一个关于分数阶导数的高阶近似,将其应用于分数阶微分方程,构造高阶数值差分格式来进行分数阶微分方程的数值求解,并在理论上给出这一算法的误差分析,证明了它的相容性,收敛性和稳定性。第三章对于一个推广到分数阶的松驰方程,直接利用Gru¨nwald-Letnikov分数阶导数定义进行离散,得到分数阶松驰方程一个数值方法,并给出了相容性,收敛性和稳定性的证明。在第四章中,进一步的考虑更复杂的非线性分数阶常微分方程,同样利用的是Lubich提出分数阶导数的高阶近似,构造相应的数值格式,并给出这一算法的误差分析,即相容性,收敛性和稳定性的证明。第五章考虑变分数阶的微分方程,在近来提出的一些模型中,分数阶导数的阶数会随着时间或空间的变化而变化,因此在最后一章中我们讨论基于Riesz分数阶导数的一类变分数阶扩散方程,给出求解这样一个方程的一个数值方法,并对其相容性,收敛性和稳定性进行了证明。