【摘 要】
:
随着量子计算机的快速发展,基于传统困难问题的公钥密码安全性面临巨大挑战。因此,可抵抗量子攻击的公钥密码成为了众多学者研究的课题。格密码是公认的能够有效抵抗量子攻击的密码技术。本文的研究重点是基于格上环误差学习(R-LWE)困难问题的内积加密。内积加密作为传统公钥密码的一般化扩展,可实现数据的“部分访问”,能为数据处理提供同时满足数据机密性与有效访问控制的方法,其丰富的表达式使得它在云环境中有良好的
论文部分内容阅读
随着量子计算机的快速发展,基于传统困难问题的公钥密码安全性面临巨大挑战。因此,可抵抗量子攻击的公钥密码成为了众多学者研究的课题。格密码是公认的能够有效抵抗量子攻击的密码技术。本文的研究重点是基于格上环误差学习(R-LWE)困难问题的内积加密。内积加密作为传统公钥密码的一般化扩展,可实现数据的“部分访问”,能为数据处理提供同时满足数据机密性与有效访问控制的方法,其丰富的表达式使得它在云环境中有良好的应用前景。内积加密还可以实现访问控制策略的隐藏,为数据的访问控制提供进一步的隐私保护能力。因此,内积加密成为了当前公钥密码的热点研究问题之一。本文旨在提高内积加密算法的效率和安全性,取得了以下成果:1.在文献[Asiacrypt 2011]中,Agrawal等基于误差学习问题(LWE)构造第一个格上的内积加密算法。R-LWE是LWE的变体问题,从R-LWE分布抽取1个样本可等价LWE分布的n个样本。受此启发,本文提出一个基于格的新型内积加密算法,方案的安全性可归约至R-LWE困难问题。与Agrawal等提出的基于LWE问题的内积加密算法相比,公共参数尺寸可缩短On因子。2.在第一个方案的基础上,本文利用g1矩阵Gn,2,m,分别将谓词向量和属性向量嵌入私钥和明文中,提出基于R-LWE的紧凑内积加密方案。该方案的公共参数只需两个随机向量和一个多项式,与第一个方案相比,公共参数尺寸和密文长度均可减少O(logq)因子,其中q表示与安全参数相关的多项式。
其他文献
随着各种各样的电子产品和电动汽车的迅速发展,人们对锂离子电池(LIBs)的需求也在不断增长,但锂资源的有限性将会阻碍锂离子电池的发展。钠离子电池(SIBs)由于其丰富的钠资源和相似的电化学性能,被认为是LIBs的潜在替代品。目前,资源丰富、成本低、无毒、安全性高的碳基材料储钠的可行性已得到证实,并且广泛的研究表明,其可以成为很有前途的SIBs电极候选材料。但是以往的研究大多集中在SIBs电极材料的
心脏是胚胎发育过程中第一个功能性器官。心脏的发育需要多种转录因子和生长因子,如早期胚胎心脏的正常发育需要血小板生长因子(Platelet-derived growth factor,PDGF)及其受体(Platelet-derived growth factor receptor,PDGFR)特定的时空表达。PDGF有4种亚单位,分别是PDGF-A、-B、-C和-D,四个均属于酪氨酸激酶家族。PD
ns~2电子组态离子掺杂无机纳米发光材料因其优越的光学性能,在LED照明显示、X射线闪烁体等光电领域具有广泛的应用前景。与d和f电子组态离子(如Mn2+、Cr3+和稀土离子)的d→d和f→f宇称禁戒跃迁导致吸收效率低不同,ns~2电子组态离子由于s~2→sp允许跃迁而具有较大的吸收系数。因此,该类掺杂离子既可以作为敏化剂也可以作为激活剂,来调节发光材料的光学吸收和发光特性。本论文中,我们报道了一种
水分解制氢在生产可持续氢能源和解决化石燃料的广泛使用带来的污染问题方面具有巨大潜力,近水年来在科研界引起了广泛关注。因此,寻求高性能且稳定的光电阳极半导体是光电催化分解技术的关键。单斜白钨矿Bi VO4(BVO)作为一种n型半导体,由于其具有合适的带隙(2.4 e V)可以吸收可见光和合适正价带边缘以进行充分的氧反应,但是由于原始BVO的载流子传输效率缓慢,电子-空穴复合严重,导致实际中光电流密度
当今时代,数据作为重要的生产要素,为经济价值的创造带来巨大提升。随着大数据产业市场规模的迅速扩大,大数据的开放共享、交换流通成为趋势。然而个人隐私泄露问题正在阻碍数字经济的发展。随着数据的公开,用户网络形象逐渐丰富,个人隐私泄露的风险越来越大。为保护网络用户个人信息安全,一些隐私保护算法被研究者提出。然而这些隐私保护算法并不是百利而无一害的,基于匿名的隐私保护算法需要以数据的可用性为代价;基于加密
随着新课程改革的推进,探究式教学在物理课堂中发挥着越来越重要的作用,为了解优质初中物理探究性课堂的行为特点,论文使用改进后的弗兰德斯互动分析系统对优质初中物理探究性课堂进行分析。同时本研究还对福建省新手教师和熟手教师探究性课堂行为特点进行分析,以期了解福建省新手教师和熟手教师探究式课堂与优质课堂的区别。论文在梳理弗兰德斯互动分析系统在我国的应用现状后,结合本研究的目的对弗兰德斯互动分析系统进行了相
激光硬组织消融技术在牙科治疗方面具有广阔前景,已成为当前激光医学领域的研究热点和难点。本文立足于激光牙硬组织消融的研究现状和牙科医疗的临床需求,采用理论分析和离体黄种人拔牙组织消融实验研究相结合的方法,对9.3μm波长CO2激光的消融特性、量效关系和大面积消融技术开展了较系统的研究,实验确定了9.3μm波长光源辐照黄种人牙釉质和牙本质的消融阈值分别为6.07 J/cm~2和5.76 J/cm~2,
球等鞭金藻(Isochrysis galbana)是一种生长周期短、没有细胞壁的海洋微藻,富含岩藻黄素和多种不饱和脂肪酸,是一种难能可贵的藻类资源,被广泛的应用于医疗保健、能源生产、水产养殖等领域。岩藻黄素具有抗氧化能力;DHA,也称“脑黄金”,促进脑部发育,还有抗癌、预防心血管疾病等功能。通过研究不同光质培养对球等鞭金藻岩藻黄素及脂肪酸含量的影响、蓝光诱导球等鞭金藻岩藻黄素及脂肪酸合成转录组及活
ALX1作为转录因子,它在脊椎动物神经管闭合、四肢发育和颅面发育方面具有重要作用。在人类中,ALX1基因的突变会导致严重的颅面畸形。实验室前期的研究中,我们在颅神经嵴来源的细胞中特异性敲除小鼠Alx1基因导致腭裂表型。同时,我们还发现,该敲除小鼠的切牙还发生了缺失。目前尚无Alx1在小鼠切牙发育中的作用的相关研究报道。因此,本实验利用该基因敲除小鼠模型,对Alx1在切牙发育过程中的作用及其调控机制
光催化分解水被认为是一种可以有效利用太阳能来解决日益严重的环境和能源问题的方式。在过去大约五十年,随着光催化技术的发展,人们开发了许多种类的半导体材料,如金属氧化物、氮化物和硫化物,并在光催化分解水制氢方面取得了很大进展。时至今日,传统的无机半导体光催化剂仍然普遍缺少表面活性位点,而且其光生激子(电子空穴对)的复合问题依然严峻,因此围绕光生电荷分离、迁移以及表面反应动力学提升方法的探索一直是半导体