【摘 要】
:
呼吸率是人体重要的生理参数之一,也是临床诊断的重要依据。推广呼吸率的日常监控对防控呼吸性疾病及其他并发性疾病具有重要意义。现有的呼吸率监控设备因便携性差、操作复杂等缺点,大多不适合日常监控,而脉搏波的采集设备轻便、操作简单,且脉搏波含有多种人体生理信息,有利于呼吸率监控的日常化。虽然近年来基于脉搏波的呼吸率提取方法有了一定的发展,但脉搏波极易受到噪声干扰,从脉搏波中提取稳定的呼吸信息仍然具有一定的
论文部分内容阅读
呼吸率是人体重要的生理参数之一,也是临床诊断的重要依据。推广呼吸率的日常监控对防控呼吸性疾病及其他并发性疾病具有重要意义。现有的呼吸率监控设备因便携性差、操作复杂等缺点,大多不适合日常监控,而脉搏波的采集设备轻便、操作简单,且脉搏波含有多种人体生理信息,有利于呼吸率监控的日常化。虽然近年来基于脉搏波的呼吸率提取方法有了一定的发展,但脉搏波极易受到噪声干扰,从脉搏波中提取稳定的呼吸信息仍然具有一定的挑战,尤其基于大规模数据的表现不尽人意。本文针对上述问题,提出基于脉搏波多特征融合的呼吸率提取方法,主要的研究工作和贡献如下:(1)数据预处理方面:本文提出了一种多通道数据筛选及融合方法。该方法通过对脉搏波的波形特征进行分析识别,实现了对采集过程中信号存在的失真、突变等异常情况的自动检测。基于检测结果,该方法可以过滤掉异常的脉搏波、保留高质量的脉搏波。进一步,本文对筛选后的多通道脉搏波进行融合,以弥补单通道脉搏波的信息缺失。(2)特征提取及可信度评价方面:本文提出了一种多维脉搏波时频特征的提取方法和一种特征可信测度的评价方法。为了提取包含呼吸信息的特征,本文基于呼吸活动对脉搏波有调制作用的原理,对多通道融合后的脉搏波提取了与幅度和频率变化相关的多维脉搏波时频特征;另外,本文根据呼吸活动的周期性和低频性,为各个特征建立可信测度,解决了特征质量无法评判的问题。(3)模型构建方面:本文提出了一种基于深度学习的呼吸率提取方法。本文将多维脉搏波时频特征分别输入各自的卷积神经网络中,得到多个浅层特征;为提高优质特征的学习权重,本文利用可信测度对这些浅层特征进行加权融合,再输入深度卷积神经网络中提取呼吸率。实验结果显示,本方法较单特征和经验模态分解等呼吸率提取方法,相对误差降低了至少3%。
其他文献
将可持续的纤维素材料与电子器件结合是当今学术界的研究热点。高雾度透明纤维素薄膜是一种具有特殊光学性能的纸张。它除了具有普通纸张的优点(可降解、成本低、柔性、质轻等)外,还呈现出高的透光率和优异的光散射性能,可作为绿色光学透明材料应用于太阳能电池,提升电池的光电转化效率。然而,由于目前对高雾度透明纤维素薄膜的雾度影响因素缺乏深入系统的研究,导致雾度的形成机制还不明确,制约了该薄膜的产业化进程。因此,
粘结剂喷射3D打印(Binder jet 3D printing,简称BJ3DP)与选择性激光熔化/烧结等增材制造方法相比,具有制造成本低、适用材料广等优点,在快速、批量化生产方面具有发展潜力,近年来得到广泛关注。国外因先发优势,已在相关领域取得一定研究成果,而国内对BJ3DP技术的研究尚处起步阶段,相关文献报道较少。本文以316L不锈钢粉末为原料,以酚醛溶液为粘结剂,分析打印参数对生坯密度和尺寸
方面级情感分析(aspect-based sentiment analysis,ABSA)任务的目标是在给定目标文本与方面词的条件下进行情感极性的预测。当前,方面级情感分析领域的研究主要包括使用循环神经网络等表征方面词与上下文信息、使用预训练语言模型并微调等方式。然而当前研究存在以下问题和不足:首先,一些基于预训练语言模型的研究仅关注目标文本的语义特征表示学习,忽略了目标文本、方面词、情感极性三者
科技创新是引领发展的第一动力。2018年中美贸易摩擦以来,国际环境、国际局势骤然变化,我国科技发展同时面临划入实体名单、核心技术缺乏的挑战,以及资源能源约束、生态建设压力增大、人口红利减退的瓶颈制约。科技创新的发展路径迫切寻求突破。此背景下,粤港澳大湾区提出打造“广深港澳科创走廊”,建设具有全球影响力的国际科技创新中心,具有典型的战略意义与样本意义。本论文以“广深港澳科创走廊”的“广州-东莞-深圳
随着汽车保有量的高速增长,不仅导致交通日趋拥堵,每辆汽车平均分配到的停放空间也在逐渐缩小。狭小的泊车空间给泊车操作增加了难度,进而导致了与泊车相关的交通安全事故发生率大大增加。因此,对自动泊车技术的研究能带来巨大的社会效益。本文的研究主要针对自动泊车系统中轨迹规划和轨迹跟踪这两部分内容进行展开的,主要研究内容如下:(1)基于车辆运动学模型的泊车轨迹规划研究。首先,根据阿克曼转向原理建立了车辆运动学
作为5G移动通信系统的关键组件,天线具有十分重要的作用。在5G毫米波频段,终端设备对天线有着特殊的要求,如极化方式、辐射方向以及尺寸(剖面)等。但是,终端设备中天线数量增加与天线空间的减少,使得天线设计难度日益增加。另外,毫米波频段互连损耗大,封装天线是5G毫米波终端天线的有效解决方案,因此其研究具有重要的现实意义。本文主要开展5G毫米波终端封装天线的研究,主要内容如下:1、提出一种超低剖面宽带边
随着物联网逐渐向万物互联发展,天线的设计面临着各种不同、越来越多的应用场景需求。通常某种特定的场景下,无线系统的天线需要具备不同的辐射模式。针对以上需求,特定波束天线研究与设计显得愈发重要。特定波束天线指的是根据特定场景进行天线远场辐射特性调制与设计的天线,而方向图相乘原理是天线实现特定波束的有效手段。同时,使用方向图相乘原理能提高研究者对天线波束调控的自由度,进而实现工程应用及学术研究要求下特定
风电具有明显的不确定性,随着电力系统中风电比例不断增加,电力系统运行的不确定性越来越大,电力系统的安全性和经济性的平衡受到挑战。因此,风电不确定性的准确建模对电力系统的优化调度日益重要。针对这一问题,现阶段大量的研究将运筹学领域的不确定性决策方法应用于电力系统的优化调度问题,也取得了较好的效果。其中,随机规划和鲁棒优化两种方法得到了广泛的研究。但是,随机规划对数据预测的准确性要求较高,当有效历史数
近年来,人们对紫外探测器的需求日益增加,探测器的微型化、集成化和低功耗成为了人们研究的重点,自供电探测器不需要外加偏压即可正常工作的特点,对于实现小尺寸、低功耗器件具有重要意义。以氮化镓(GaN)、氧化镓(Ga2O3)为代表的镓系宽禁带半导体有着禁带宽度大,抗辐射强,耐高温等特点,是制备紫外探测器良好的候选材料。本论文制备了石墨烯/GaN肖特基紫外探测器、Ni/β-Ga2O3肖特基紫外探测器和Ni
以稀土镱掺杂光纤作为增益介质的1.0μm波段放大器和激光器在工业、军事、科研等领域有着广泛而重要的的应用需求。其中尤其以磷酸盐玻璃为基质的掺镱光纤,具有稀土离子掺杂浓度高、光谱性能好等优点,在短腔结构单频光纤激光、高重频锁模光纤激光的产生和功率放大等方面展现出巨大的优势。然而磷酸盐玻璃存在易吸水潮解、不稳定等缺点,如长时间暴露在空气中,将影响其使用寿命;与之相反,硅酸盐玻璃虽然增益系数较低,但具有