论文部分内容阅读
油菜是我国重要油料作物,长江中下游地区是我国油菜主产区之一,推动油菜机械化联合收获发展是提高收获效益、减少劳动强度的重要途径之一。为提高油菜联合收获机对长江中下游地区小田块经营模式适应性,针对现有油菜联合收获机结构庞杂、物料迁移路程长、机械传动系统复杂的问题,结合油菜植株茎秆高粗、分枝众多且相互牵扯、成熟度不一致等特殊生物学特性,研制了一种可实现油菜短程收获的4LYZ-2.0型全液压驱动油菜联合收获机,确定了其基本结构、工作过程及工艺路线。清选作为油菜联合收获关键环节,直接影响油菜联合收获机性能。针对常规风机加振动筛式油菜联合收获机清选装置结构复杂、振动较大的问题,设计了一种基于气流清选的旋风分离清选系统,结合油菜脱出物组分糅杂及其随机迁移特点,提出了旋风分离和前置回转筛分结合的旋风分离两种清选工艺路线,开展了台架试验及田间功能性试验,分析确定了较优工艺路线及其对应送料装置、回转筛分装置结构形式,为油菜联合收获机清选系统结构改进与优化提供了参考。具体研究内容包括:
(1)分析了4LYZ-2.0型油菜联合收获机短程收获的工艺路线及其基本参数。整机核心部件主要包括割台、切碎抛送装置、纵轴流脱粒分离装置、旋风分离清选系统等,动力均由液压驱动系统提供,采用切碎抛送装置实现油菜茎秆的初步切断、稳定脱粒分离负载,实现了油菜茎秆的短程迁移;分析确定了收获机作业参数,验证了结构布局合理性,确定了收获机割幅为2000mm、喂入量为1.5kg/s-3kg/s、发动机功率72kW。
(2)设计开发了旋风分离清选系统基本结构。旋风分离清选系统关键部件包括送料装置、双锥段式旋风分离筒、吸杂管道、离心风机等,结合4LYZ-2.0型油菜联合收获机物料喂入量输入与输出关系、油菜脱出物特性提出了以“双锥段式”旋风分离为核心环节的旋风分离和与前置回转筛分结合的旋风分离两种清选工艺路线,分析了旋风分离清选系统送料装置及回转运动筛结构形式,送料装置以减少籽粒损伤为目标提出了强制输送带与抛扬装置两种结构,回转运动筛以增加筛分效率为目标提出了锥筒筛与差速圆筒筛两种结构。
(3)开展了旋风分离清选系统送料装置、双锥段式旋风分离筒、前置回转运动筛分装置、吸杂管道与风机等关键部件设计与参数分析。开展了强制输送带与抛扬装置两种结构形式的送料装置参数分析,基于动力学原理分析了强制输送带线速度与油菜脱出物切向进入双锥段式旋风分离筒内的初速度之间的关系,分析确定了抛扬装置主轴转速不小于569.6r/min、叶轮直径为300mm、升运高度为0.6m、抛送倾角为70°。依据油菜脱出物悬浮速度差异分析确定了双锥段式旋风分离筒吸杂口直径为150mm,圆柱段直径为340mm。基于动力学分析了锥筒筛与差速圆筒筛的籽粒筛分过程,分析得出锥筒筛与差速圆筒筛的临界转速分别为40r/min-70r/min和30r/min-60r/min。
(4)开展了旋风分离清选与前置回转筛分加旋风分离组合式两种工艺路线下清选性能的台架对比试验。
a)强制输送带单因素试验结果表明,强制输送带主动辊转速为500r/min-600r/min时,清选性能较好,二次旋转正交组合试验结果得出了旋风分离清选系统最佳运行参数组合为吸杂口风速15.3m/s、强制输送带线速度1.57m/s,清洁率理论可达96.77%。
b)抛扬装置单因素试验结果表明,吸杂口风速与抛扬装置主轴转速较优范围分别为18m/s-22m/s和500r/min-700r/min,正交试验结果表明最佳参数组合为吸杂口风速22m/s、抛扬装置主轴转速600r/min、上锥段锥角30°、无挡料板、出粮口直径200mm,最佳参数组合条件下旋风分离清选系统清洁率和损失率分别为91.50%和6.02%。
在前置回转筛分与旋风分离清选组合工艺路线中对比分析了锥筒筛与差速圆筒筛两种回转筛分装置对清选性能的影响。
c)对于锥筒筛,单因素试验结果表明锥筒筛较优转速范围为40r/min-60r/min,旋风分离筒入口风速和吸杂口风速适宜范围分别为3m/s-5m/s和24m/s-28m/s;正交试验得出较优参数组合为锥筒筛转速40r/min、旋风分离筒入口风速3m/s、吸杂口风速24m/s,最佳参数组合下旋风分离清选系统清洁率为88.99%,损失率为4.86%。
d)对于差速圆筒筛,基于EDEM开展了差速圆筒筛运行参数正交试验,分析得出了最佳参数组合为助流装置转速80r/min、筛网转速35r/min及助流装置投影面锯齿数6个,在最佳参数组合条件下籽粒总损失率与清洁率分别为4.83%与85.7%。(5)基于CFD分析了双锥段式旋风分离筒结构和运行参数对气流场状态的影响。
a)探究了旋风分离筒入口风速、吸杂口风速对旋风分离筒内气流场分布的影响,以旋风分离筒锥段与圆柱段衔接面处气流速度、旋风分离筒中心轴处气流与压力等为气流场状态评价指标,建立了旋风分离筒入口风速、吸杂口风速与衔接面、出粮口等关键位置气流速度之间的数学模型,以油菜脱出物悬浮速度差异为约束条件建立了优化目标函数,优化结果表明:入口速度和吸杂口风速的较优值分别为4.25m/s和29.87m/s,数学模型计算结果与仿真分析结果基本吻合。
b)开展了旋风分离筒上锥段锥角、圆柱段直径、圆柱段高度、下锥段锥角、出粮口直径对筒内气流场分布影响的单因素试验,以筒内气流场对称性、连续性、气流零速区状态为评价指标,试验结果表明,旋风分离筒较优参数组合为上锥段锥角30°、下锥段锥角75°、筒体直径350mm、筒体高度240mm、出粮口直径200mm。
(6)以清选系统籽粒清洁率与损失率为评价指标,开展了旋风分离清选与前置回转筛分加旋风分离组合式两种工艺路线下清选系统的田间功能性试验。田间试验结果表明:以强制输送带与抛扬装置为送料装置的旋风分离清选系统清洁率分别为94.45%和90.21%,损失率分别为7.73%和6.54%;以锥筒筛与差速圆筒筛为前置回转筛分装置的旋风分离清选系统清洁率分别为86.8%和84.4%,损失率分别为6.7%和5.9%;旋风分离清选工艺路线下籽粒清洁率较高,前置回转筛分与旋风分离清选组合工艺路线下籽粒损失率较小,两种工艺路线下清洁率与损失率差距不大,旋风分离工艺路线结构更为简化,为油菜联合收获机旋风分离清选系统结构改进和优化提供了参考。
(1)分析了4LYZ-2.0型油菜联合收获机短程收获的工艺路线及其基本参数。整机核心部件主要包括割台、切碎抛送装置、纵轴流脱粒分离装置、旋风分离清选系统等,动力均由液压驱动系统提供,采用切碎抛送装置实现油菜茎秆的初步切断、稳定脱粒分离负载,实现了油菜茎秆的短程迁移;分析确定了收获机作业参数,验证了结构布局合理性,确定了收获机割幅为2000mm、喂入量为1.5kg/s-3kg/s、发动机功率72kW。
(2)设计开发了旋风分离清选系统基本结构。旋风分离清选系统关键部件包括送料装置、双锥段式旋风分离筒、吸杂管道、离心风机等,结合4LYZ-2.0型油菜联合收获机物料喂入量输入与输出关系、油菜脱出物特性提出了以“双锥段式”旋风分离为核心环节的旋风分离和与前置回转筛分结合的旋风分离两种清选工艺路线,分析了旋风分离清选系统送料装置及回转运动筛结构形式,送料装置以减少籽粒损伤为目标提出了强制输送带与抛扬装置两种结构,回转运动筛以增加筛分效率为目标提出了锥筒筛与差速圆筒筛两种结构。
(3)开展了旋风分离清选系统送料装置、双锥段式旋风分离筒、前置回转运动筛分装置、吸杂管道与风机等关键部件设计与参数分析。开展了强制输送带与抛扬装置两种结构形式的送料装置参数分析,基于动力学原理分析了强制输送带线速度与油菜脱出物切向进入双锥段式旋风分离筒内的初速度之间的关系,分析确定了抛扬装置主轴转速不小于569.6r/min、叶轮直径为300mm、升运高度为0.6m、抛送倾角为70°。依据油菜脱出物悬浮速度差异分析确定了双锥段式旋风分离筒吸杂口直径为150mm,圆柱段直径为340mm。基于动力学分析了锥筒筛与差速圆筒筛的籽粒筛分过程,分析得出锥筒筛与差速圆筒筛的临界转速分别为40r/min-70r/min和30r/min-60r/min。
(4)开展了旋风分离清选与前置回转筛分加旋风分离组合式两种工艺路线下清选性能的台架对比试验。
a)强制输送带单因素试验结果表明,强制输送带主动辊转速为500r/min-600r/min时,清选性能较好,二次旋转正交组合试验结果得出了旋风分离清选系统最佳运行参数组合为吸杂口风速15.3m/s、强制输送带线速度1.57m/s,清洁率理论可达96.77%。
b)抛扬装置单因素试验结果表明,吸杂口风速与抛扬装置主轴转速较优范围分别为18m/s-22m/s和500r/min-700r/min,正交试验结果表明最佳参数组合为吸杂口风速22m/s、抛扬装置主轴转速600r/min、上锥段锥角30°、无挡料板、出粮口直径200mm,最佳参数组合条件下旋风分离清选系统清洁率和损失率分别为91.50%和6.02%。
在前置回转筛分与旋风分离清选组合工艺路线中对比分析了锥筒筛与差速圆筒筛两种回转筛分装置对清选性能的影响。
c)对于锥筒筛,单因素试验结果表明锥筒筛较优转速范围为40r/min-60r/min,旋风分离筒入口风速和吸杂口风速适宜范围分别为3m/s-5m/s和24m/s-28m/s;正交试验得出较优参数组合为锥筒筛转速40r/min、旋风分离筒入口风速3m/s、吸杂口风速24m/s,最佳参数组合下旋风分离清选系统清洁率为88.99%,损失率为4.86%。
d)对于差速圆筒筛,基于EDEM开展了差速圆筒筛运行参数正交试验,分析得出了最佳参数组合为助流装置转速80r/min、筛网转速35r/min及助流装置投影面锯齿数6个,在最佳参数组合条件下籽粒总损失率与清洁率分别为4.83%与85.7%。(5)基于CFD分析了双锥段式旋风分离筒结构和运行参数对气流场状态的影响。
a)探究了旋风分离筒入口风速、吸杂口风速对旋风分离筒内气流场分布的影响,以旋风分离筒锥段与圆柱段衔接面处气流速度、旋风分离筒中心轴处气流与压力等为气流场状态评价指标,建立了旋风分离筒入口风速、吸杂口风速与衔接面、出粮口等关键位置气流速度之间的数学模型,以油菜脱出物悬浮速度差异为约束条件建立了优化目标函数,优化结果表明:入口速度和吸杂口风速的较优值分别为4.25m/s和29.87m/s,数学模型计算结果与仿真分析结果基本吻合。
b)开展了旋风分离筒上锥段锥角、圆柱段直径、圆柱段高度、下锥段锥角、出粮口直径对筒内气流场分布影响的单因素试验,以筒内气流场对称性、连续性、气流零速区状态为评价指标,试验结果表明,旋风分离筒较优参数组合为上锥段锥角30°、下锥段锥角75°、筒体直径350mm、筒体高度240mm、出粮口直径200mm。
(6)以清选系统籽粒清洁率与损失率为评价指标,开展了旋风分离清选与前置回转筛分加旋风分离组合式两种工艺路线下清选系统的田间功能性试验。田间试验结果表明:以强制输送带与抛扬装置为送料装置的旋风分离清选系统清洁率分别为94.45%和90.21%,损失率分别为7.73%和6.54%;以锥筒筛与差速圆筒筛为前置回转筛分装置的旋风分离清选系统清洁率分别为86.8%和84.4%,损失率分别为6.7%和5.9%;旋风分离清选工艺路线下籽粒清洁率较高,前置回转筛分与旋风分离清选组合工艺路线下籽粒损失率较小,两种工艺路线下清洁率与损失率差距不大,旋风分离工艺路线结构更为简化,为油菜联合收获机旋风分离清选系统结构改进和优化提供了参考。