论文部分内容阅读
高温热泵技术作为一种有效的能质提升技术,是可以满足实现清洁能源供暖和工业节能的技术之一,在此背景下,需要对传统的热泵技术及应用进行深入的创新性研究。其创新研究的目标是实现大幅度提升能质的效果,以期利用温度尽可能低的热源,如工业排放低温热、冬季的空气源、太阳能等,满足建筑用能及工业余热供暖远距离输送的需求。本文对高温热泵工质进行了理论分析,对高温热泵进行了试验和仿真研究,使其制热温度达到了创纪录的130℃指标,且单级提升温差为50℃,并将其推广应用到实际工程中,在此基础上对太阳能热泵供热系统进行了经济和整体性评价。本文提出新型双元高温混合工质BY-5,该工质具有良好的环保性能和高温性能,其ODP为0,GWP值较低,临界温度为155℃,适用于制热温度为110-130℃,单级温升为50℃的工况。将BY-5与高温工质R11、R113、R114、R123、R21、R236ea、R245ca、R245fa的理论循环性能进行对比分析表明,其压力、制热量、COP、容积制冷量四个关键参数方面表现最优。本文对高温热泵性能进行了试验研究,试验结果表明,该系统在热源温度70-80℃、制热温度为110-130℃区间循环性能优越。当制热温度为130℃时,机组相应的冷凝压力、压缩比、排气温度和COP分别为2.71 MPa、4.44、132.37℃和2.54。热源侧和使用侧的温差?T小于46℃时,热泵机组的COP始终大于3.0,机组运行稳定,具有较好的经济性。该结论有利于将高温热泵推广到各种形式的低温热源利用中。对试验高温热泵系统建立数学仿真模型,根据试验数据进行验证,系统仿真计算结果与试验结果对比分析表明,试验值和模型计算值变化趋势一致,热泵输入功率、制热量及COP三个参数的最大偏差分别为3.83%、5.39%和3.55%。利用该模型进行工况预测,结果表明135℃以内的工况,BY-5的性能更具优越性。本文尝试将130℃高温热泵技术推广到工业应用,用于化工精馏塔底重沸器节能改造中,实现工业化稳定运行,取得了良好的经济、环境和社会效益。为满足清洁供暖需求,本文还对太阳能热泵系统替代传统锅炉供暖的问题进行了理论探讨,分析了其在不同制热温度段适宜采用的循环工质,并对太阳能热泵系统、空气源热泵、燃煤锅炉、燃气锅炉和电锅炉五种供热方式的经济和整体性能,采用费用年值法和模糊综合评判的方法进行了评价。评价结果表明,太阳能热泵的年值费用比燃煤锅炉略低2%;电锅炉供暖的费用最高,经济性最差。空气源热泵和太阳能热泵系统的评判因子为0.857和0.768,相对于锅炉供暖方式来说评判因子更高,太阳能热泵系统的经济性属于较高等级,可进行推广。