地震数据去噪中的几种变分模态分解方法

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:zhihong0223
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
使用地震数据研究地球物理特征,这对于地球内部结构探索至关重要。然而,大多数真实地震数据在记录过程中都受到噪声污染。数据中的噪声导致重要信息被掩盖,从而影响分析的准确程度。因此,记录数据的噪声消除是地震信号处理中的一项重要任务。获取高分辨率图像,提高信噪比,挖掘隐藏信息并保留重要特征是去噪过程的关键。为了深入研究此问题,人们提出了许多数学理论和方法。这些算法各有优缺点。本论文综合现有技术的优点,针对解决现有技术的不足,使用新的思想和方法改进结果。传统方法如维纳滤波、卡尔曼滤波、傅里叶变换是主流的方法,然而,这些仅适用于线性和平稳信号的研究。小波、经验模态分解(EMD)、变分模态分解(VMD)等方法是处理非平稳非线性信号的常用方法。为了更好地解决去噪问题,我提出了一种基于VMD的去噪新算法。在本文中,我们应用所提出的方法来去除噪声,提高信噪比和分辨率,并研究了噪声对地震峰值、位移、起跳时间等重要参数的影响。通过对合成地震数据、真实地震数据和二维地震数据的实验,验证了该模型的有效性。地震数据去噪并非十分复杂,但在这一过程中,保留原始的重要特征是最关键的。EMD方法可以去除数据中的噪声,但缺乏较完备的数学基础,模态混合问题明显,我们消除了第一模态,因此模态中包含的信息很有可能丢失。VMD方法解决了模态混合等EMD缺陷,在VMD过程中不消除任何模态,模态信息丢失的机会很小。但由于数据中存在较强的噪声,VMD方法的灵敏度较低,因此我提出了改进方法。首先使用VMD将噪声信号从低频率分解为高频率的固有模态数(IMF)。利用核密度估计(KDE)计算概率密度函数(PDF),进而将这些模态分为信号模态和噪声模态。利用连续小波变换和S-G滤波器的滤波特性对高频噪声模态进行重构。最后我针对噪声峰值、加速度、位移的影响进行了实验研究。我们提出了二维地震数据去噪方法,在第2章中,我们解释了噪声如何导致P波起跳时间识别不准确。在第3章我们将算法扩展为2D,第4章中,我们将小波变换应用于二维地震数据的几何模态分解去噪。综合和实际地震资料的数值结果验证了该方法的有效性。
其他文献
光热纳米材料在肿瘤治疗、水蒸发、能源转化等领域展现出广阔应用前景。目前已开发的各种光热纳米材料往往存在成本高、合成方法复杂等问题,而且产量只限于实验室水平。因此,为了光热纳米材料可以真正实际应用,就需要寻找合成简单、成本低廉、光热特性优异、且可以实现规模化合成的有效途径。近年来以氢气氢化处理金属氧化物纳米材料获得光热纳米材料的策略激发了人们的研究热情,尤其是多种金属氧化物纳米材料已实现产业化,可以
近些年随着我国人口老龄化趋势的加重以及人们出行方式的改变,骨科手术量逐年增长,尤其是腰椎疾病已经成为临床最主要的病种。机器人辅助脊柱手术是融合机器人技术、图像处理技术和脊柱手术技术的新型临床解决方案。这种解决方案缓解了传统微创手术对医生经验的过度依赖,也缩短了医生在计算机辅助手术中的学习曲线,并有利于提升临床手术的精确性和可靠性。现有机器人产品主要面向术中椎弓根钉道定位,而精细、繁重的椎弓根钉道钻
氮杂和氧杂环结构片段广泛存在于天然产物、药物以及功能材料分子之中,由于其独特的生理及化学活性,高效快速构建此类杂环化合物成为有机合成化学重要的研究领域。烯烃来源广泛且性质活泼,是重要的石化产品和基础化工原料,通过烯烃与杂原子的亲核加成反应构建碳杂键以及杂环化合物一直备受关注。然而一般情况下烯烃难以发生亲核反应,传统的酸化以及自由基引发的方法又有诸多弊端,例如环境不友好以及安全系数低等,因此烯烃的亲
涡轮叶片高负荷设计能够通过提高叶片负荷水平的方式提高航空发动机的推重比水平,但也存在加大栅内二次流控制难度、提高二次流损失的负面影响。当前研究基于某涡轴发动机第一级动叶根部叶型,对比了变稠度设计与变转角设计对叶片负荷水平的影响及两类高负荷涡轮叶栅的流场特征,开展了叶片复合弯曲与端壁分区造型的设计与应用研究以及二者的联合设计与应用研究。此外,数值方法验证中还提出了一种可以保持风洞侧壁完整的实验系统周
Cf/SiC复合材料具有比强度高、断裂韧性好以及高温性能优异等一系列优点,被认为是最重要的高温结构材料之一。但是,Cf/SiC可加工性较差并且制备成本高昂,这在一定程度上限制了它的应用。因此,将Cf/SiC与加工性好、耐高温且成本较低的金属Nb连接,可弥补Cf/SiC在应用方面的不足,扩展Cf/SiC的应用范围。本文基于相图的理论分析设计了三种Ti基钎料,实现了Cf/SiC与Nb的可靠连接,通过(
具备高反应特性的活性氧、活性硫和活性羰基化合物等小分子物质以及具备高催化功能的酶在调节细胞内物质代谢、调控相应生物学功能、维持细胞稳态和正常生理功能方面发挥着至关重要的作用。因此,检测和监测细胞内活性物质有助于了解它们在细胞内的生物作用以及引起的各种生物学效应,并在揭示它们的生理功能和涉及疾病的病理学研究等方面具有重要的生物学和医学意义。近些年,得益于荧光成像技术的发展,荧光探针技术在可视化检测和
近年来,随着航天领域的快速发展,针对振动测量技术的研究日益迫切,对航天器运动副微弱振动的非接触、高效、高精度检测在航天领域内具有重要意义。激光自混合干涉技术测量精度高且具有自准直、结构紧凑等优点而越来越受到研究者的青睐。激光自混合干涉测量技术是一种基于激光二极管弱耦合现象的测量方法。激光器的出射光束被物体表面反射或散射后再次进入激光内腔,与腔内光混合后调制激光器的功率输出,形成自混合干涉。研究通用
生物水黾是一种常见的水生昆虫,能够在水面飞快的滑行与跳跃。其非凡的水面环境运动能力,成为学者们研究水面运动机器人争相模仿的对象。仿水黾水面运动机器人可用于导航通讯中继节点、执行水质监测、水面侦查等任务,在军用、民用领域均具有广阔的应用前景。仿水黾机器人的研究不仅需要探究生物水黾水面运动机理,同时涉及到机器人水-空气界面运动与水相互作用,由于水的流动性与易扰动性,导致其在运动过程中与水相互作用力变化
石油工业的迅速发展造成的石油烃类(Total petroleum hydrocarbons,TPH)污染已成为我国土壤资源破坏的主要形式之一。同时,石油火灾的扑灭以及定期的防火演习导致了大量水成膜泡沫灭火剂(Aqueous film forming foams,AFFF)的释放,从而引起了全氟烷基化合物(Perfluoroalkyl substances,PFAS)的环境污染。这也促使了一些石油工
对于工作温度为中温段的热电材料,无论是从热电优值和机械性能角度比较,还是从经济性和环境友好性角度比较,方钴矿基热电材料均具有显著的竞争优势,并被成功应用在民用汽车尾气废热回收和航天深空探测领域。热电材料在实际应用中需要将p型热电材料与n型热电材料用导电材料连接组成热电器件使用。调控热电材料内部声电输运,优化热电传输性能,同时设计低接触电阻和高热稳定性的电极/热电材料接头是实现高转换效率和高可靠性热