【摘 要】
:
无人船因其具有高度自主性和智能性,将被广泛应用于未来海洋防务与海洋资源开发。但就目前技术水平来看,无人船运动控制性能在模型依赖性、控制能耗最优性、动力学受限等方面,均存在明显瓶颈。本文着重考虑状态和控制输入受限、运动模型未知、未知环境扰动等情形下的无人船运动控制系统设计问题,提出基于自适应动态规划的最优控制策略,在没有模型支持、运动状态和控制输入均受限等不利因素影响下,仍可确保无人船以最优的控制行
论文部分内容阅读
无人船因其具有高度自主性和智能性,将被广泛应用于未来海洋防务与海洋资源开发。但就目前技术水平来看,无人船运动控制性能在模型依赖性、控制能耗最优性、动力学受限等方面,均存在明显瓶颈。本文着重考虑状态和控制输入受限、运动模型未知、未知环境扰动等情形下的无人船运动控制系统设计问题,提出基于自适应动态规划的最优控制策略,在没有模型支持、运动状态和控制输入均受限等不利因素影响下,仍可确保无人船以最优的控制行为实现理想的轨迹跟踪。主要工作如下:首先,针对运动模型完全未知的无人船最优跟踪控制问题,提出了一种基于自适应动态规划的最优轨迹跟踪控制策略。具体地,采用神经网络逼近技术对未知系统动态进行快速辨识和补偿,实现无人船无模型跟踪控制;然后在反步技术框架下采用自适应动态规划算法设计最优控制策略,实现无人船最优轨迹跟踪控制;严格的理论推导证明,整个闭环控制系统稳定且轨迹跟踪误差半全局一致最终有界。通过大量仿真验证和比较分析表明,所设计的最优控制策略与传统反步控制策略相比在无人船系统动态未知时能更加精确地跟踪参考轨迹。其次,针对状态受限下无人船无模型轨迹跟踪最优控制问题,提出了一种结合障碍李雅普诺夫函数和自适应动态规划技术的最优控制策略。具体地,通过采用对数型障碍李雅普诺夫函数确保跟踪误差限制在预设范围,从而解决轨迹跟踪过程中无人船的位姿与速度受限问题;同时结合反步技术与策略迭代算法设计出最优控制策略,实现无人船最优轨迹跟踪控制,整体系统稳定性和误差收敛性由李雅普诺夫稳定性分析严格保证。仿真结果验证了与自适应神经网络算法相比本章所设计的控制策略在精确跟踪参考轨迹的同时位姿与速度能够保持在指定范围内。最后,针对状态和输入同时受限的无人船无模型轨迹跟踪最优控制问题,提出了一种结合滑模控制技术、障碍李雅普诺夫函数和自适应动态规划算法的最优控制策略。具体地,采用滑模控制技术补偿外界扰动,确保控制系统的强鲁棒性;然后结合障碍李雅普诺夫函数限制无人船状态,在执行器-评判器结构下设计基于自适应动态规划的最优控制策略,实现无人船最优轨迹跟踪、且确保无人船位姿与速度保持在指定范围内;通过稳定性理论分析,确保轨迹跟踪误差渐进收敛到零。仿真结果验证了与自适应模糊最优控制相比本章设计的控制策略在未知扰动和死区输入下仍能更加精确地跟踪参考轨迹且跟踪过程中无人船的位姿与速度保持在预设范围内。
其他文献
能源紧缺是人类面临的重大问题,因此效率高的开关磁阻电机(Switched Reluctance Motor,简称SRM)具有极大的发展潜力。传统起重机用电机具有效率较低,起动电流大,起动转矩小等缺点,而SRM作为新一代特种电机,具有可靠性高、调速性能好、起动电流小以及起动转矩大等优点,在起重机领域有着广阔的应用前景。首先,本文对SRM的结构、工作原理以及数学方程进行分析,然后通过堵转试验测取SRM
在“建设21世纪海上丝绸之路”大背景下,实现沿线各国互联互通,满足地区共同市场需求,推进国际物流体系建设,将会为航运业带来前所未有的机遇。随着现代船舶朝着大型化的发展,船舶配套设备朝着智能化加速发展。船舶电站是船舶的主要组成部分,开展对船舶电站自动化的研究,将发电机、配电装置、负载进行有效管理,保证船舶电站供电的连续性和可靠性,这些方面的研究对船舶海上安全航行具有重要意义。本论文主要工作如下:第一
轮缘推进器是近年来出现的一种高性能的新型推进装置,采用集成化思想,将螺旋桨与电机实现一体化设计,具有体积小,重量轻,效率高,易于控制等优点,适用于无人船推进系统。永磁式轮缘推进器在浑浊水域工作时,由于整个电机浸没在水下,电机中的永磁体就容易吸附水中的铁磁性颗粒物,影响电机的性能。本文提出了一种轴径向磁通开关磁阻型轮缘推进电机(Axial-radial Flux Switched Reluctanc
随着科学技术的发展,人机交互的方式日益多样化。其中,基于手势识别技术的交互方式因其自然、便捷的特性已成为目前人机交互领域的研究热点。然而,基于视觉的手势识别技术在实际应用中存在手型变化大、背景复杂等影响识别精度的问题。因此,对手势识别技术的进一步研究具有重要的现实意义。本文设计并实现了基于视觉的轮式倒立摆机器人手势识别系统,通过自定义的动态手势来控制轮式倒立摆机器人的运动状态。首先,为获取手部目标
大型低速二冲程柴油机作为船舶的主推进动力装置,在船舶航行中维持稳定的转速输出,对船舶的安全性、经济性有着重大影响。数字式电子调速器由于控制精度高、响应速度快等优点被广泛应用于船用柴油机的转速控制中,其核心控制规律以简单可靠的PID控制为主。控制器的参数通常基于额定工况整定,从而易陷入局部最优化而忽略全工况范围与极端负载扰动工况下的控制效果,并且在控制器设计过程中存在参数整定繁琐、设计难度较大等问题
海洋运输业快速发展,在其所涉及到的海上巡检、环境检测、污染物跟踪、海洋学研究等领域中,以无人艇、无人机为代表的智能系统已经成为重要的测试平台。无人艇通过无人机搭载摄像头获得空中视角和预警侦查的能力。无人机在完成空中信息获取任务后,返航至无人艇上进行充电续航以及转移场地等操作,延长了无人机的续航时间,扩大了无人机执行任务的范围。因此设计一种无人机自主精确降落的方案对海空协同任务的完成具有重大意义。为
随着目前对轮机模拟器功能要求的提高,模拟器中的各种船舶设备的功能与操作都需要完善与增强。空调制冷系统是船舶主要辅助系统之一,是现代船舶建造时必不可少的装船设备,该系统运行的好坏直接对在船人员及重要关键设备有重要影响。因此,对船舶空调系统进行建模与仿真研究是有重要意义的。本文选取大连海事大学实习教学船中的空调制冷系统作为研究对象,对船舶空调制冷系统的概况和运行特点进行了详细的介绍,并应用质量、能量守
尾鳍式驱动潜航器相对于传统的水下潜航器具有节能、高效、低噪声、隐蔽性好等特点,一直以来都受到国内外研究机构的高度重视,逐渐成为仿生科研领域的热门研究对象。为了验证尾鳍式驱动潜航器的可行性,本课题在广泛参考当前尾鳍式驱动潜航器系统基础上,设计出一种单关节驱动可升潜的尾鳍式驱动潜航器,主要工作包括:潜航器外型及运动机构机械设计、硬件系统设计、上下位机软件系统开发、运动学建模以及潜航器实验等。具体工作内
现如今,世界各国对能源的需求迅速增长,使得石油的海洋开采和海上运输活动更加频繁。船舶在运输过程中可能发生油轮碰撞或石油开采平台因意外事故造成原油泄漏,因此海面溢油监测工作是必不可少的。为了能够实时监测是否有海面溢油事故的发生,以便后续及时处理,本文采用了低成本的近距离可见光/热红外视觉装备进行海面溢油全天候监测,并通过深度学习算法进行特征提取与智能分析。针对当前缺少近距离可见光/热红外溢油数据集的
气动执行机构由于其结构简单、工作效率高、生产成本低、安全可靠等优点,在电力、造纸、冶金、食品、石油化工、制药等领域得到越来越多地应用。气动执行机构的安全运行对上述工业领域至关重要,因此提高气动执行机构的安全性和可靠性是保障稳定生产的前提条件。针对人工检测气动执行机构的故障需要耗费大量时间和人力的问题,本文以气动执行机构为研究对象,研究了气动控制系统的结构、工作原理与典型故障,提出了基于随机森林算法