【摘 要】
:
压电陶瓷作为一种可将机械能和电能进行相互转换的重要功能材料,已经在社会经济、国防安全等多个领域得到了广泛应用。随着科学技术的发展,压电陶瓷正在从常规应用转向高温等极端环境下的特殊应用。BiYbO3-Pb(Zr0.48Ti0.52)O3是一种典型的三元系钙钛矿结构铁电体,它相对于传统的二元系PZT具有更高的居里温度(TC=391℃),有望作为敏感元件应用于工作温度超过200℃的器件之中。然而,该体系
论文部分内容阅读
压电陶瓷作为一种可将机械能和电能进行相互转换的重要功能材料,已经在社会经济、国防安全等多个领域得到了广泛应用。随着科学技术的发展,压电陶瓷正在从常规应用转向高温等极端环境下的特殊应用。BiYbO3-Pb(Zr0.48Ti0.52)O3是一种典型的三元系钙钛矿结构铁电体,它相对于传统的二元系PZT具有更高的居里温度(TC=391℃),有望作为敏感元件应用于工作温度超过200℃的器件之中。然而,该体系材料的压电性能(d33=238 p C/N)和温度稳定性也有待提高,才能满足高灵敏、高稳定压电器件的应用需求。本论文选择0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3(BY-PZT)为基础配方,采用固相反应法制备了BY-PZT基压电陶瓷样品(以下简称BY-PZT陶瓷或样品),研究掺杂剂类型、浓度以及烧结温度对陶瓷微观结构和电学性能的影响,并借助介电温谱分析、高温谐振-反谐振测试、热退极化实验等手段来表征陶瓷的高温电学性能,揭示三元系钙钛矿结构陶瓷性能的提升机理。本论文主要研究内容如下:1.研究了不同氧化物(La2O3、Ce O2、Cr2O3、Mn O2)掺杂对BY-PZT陶瓷结构和性能的影响。样品均为单一四方相,Cr2O3掺杂的样品晶粒存在异常长大。介电温谱证实四种氧化物掺杂均能提高其介电性能的温度稳定性。交流阻抗谱发现:同一温度下Cr2O3掺杂的样品具有最大的高温阻抗。掺杂La2O3的样品兼具高TC~397℃和高d33~290 p C/N。并且,随着温度的升高,样品的径向谐振频率(fr)和反谐振频率(fa)逐渐靠近。2.研究了La2O3掺杂量(x=0~0.6 wt.%)对BY-PZT-x La陶瓷结构和性能的影响。结果显示:随着x的增加,样品的介电损耗因子(tanδ)和TC逐渐降低。采用修正的居里-外斯定律研究BY-PZT-x La陶瓷在TC以上的介电温度行为,发现其存在弥散相变特征。组分x=0.1具有较高的TC~388℃,最高的d33~320 p C/N,以及接近于其TC的热退极化温度Td~350℃,显示出优异的温度稳定性。3.研究了烧结温度(1040℃~1120℃)对BY–PZT–0.1La陶瓷结构和性能的影响。随着烧结温度的增加,陶瓷的平均晶粒尺寸(Dλ)从1.26μm逐渐增大1.65μm,相对密度和介电常数呈先增大后减小。1100℃烧结的样品最为致密(ρrel=97.75%),且具有优越的电学性能:εr=1300、kp=53.23%、tanδ=2%。
其他文献
传统非可再生能源的大量使用导致的能源危机和环境污染等问题日益严重,这使得探寻和发展新的清洁可再生能源势在必行。在众多的可再生能源中,氢能因其储量丰富和清洁无污染等特点被认为是未来最具潜力的化石燃料替代品。电解水制氢技术因其制氢过程简单和原材料来源广泛等特点,是最有前景的制氢方式之一。但受限于阳极析氧反应(OER)缓慢的动力学和较高的过电位,电解水制氢技术的整体效率仍比较低下。因此,为提升电解水的整
液态锂铅(PbLi)氚增殖包层具有结构形式简单、高氚增殖比、热电转换效率高以及可在线提氚和换料等诸多显著优势,是聚变堆最具有发展潜力的液态包层设计方案之一。安全高效地从液态PbLi中提取氚是液态PbLi氚增殖包层设计方案可行性的重要保障。鼓泡塔是连续式气液接触反应设备,因其结构简单、传热传质效率高等优点,被选用于提取液态PbLi中的氚。鼓泡塔内的气液两相流体力学与传质特性是设计和优化鼓泡塔的研究重
塑料食品包装材料难以降解,已经严重影响陆地和海洋的生态系统,危及人类健康。因此,研发新的可生物降解的包装材料是势在必行。天然聚合物具有良好的生物相容性和可降解性的优点。把天然抗菌剂或抗氧化的活性物质添加到天然高分子聚合物中可得到活性包装材料。这类食品包装材料可以延长食品的保质期。姜叶中富含多酚黄酮类化合物,其具有抗氧化和抗菌性能。提取这类天然活性产物复合天然聚合物基底中,制备出具有良好抗菌抗氧化性
可再生能源的广泛应用,需要开发高效、低成本的绿色能源存储系统。锂离子电池(LIBs)早已成熟的应用于生活场景中,钠离子电池(SIBs)和钾离子电池(PIBs)作为“后锂离子电池”,其工作原理和电池器件与锂离子电池相似,同样可作为高能量密度储能系统。然而碱金属离子半径各不相同,传统的锂离子电池石墨负极并不适合应用于SIBs和PIBs。因此,如何研发具有良好电化学性能的先进负极材料,对碱金属离子电池的
恶性肿瘤是一个国际性的健康挑战,它对人类健康造成了重大威胁。化疗是一种有效的治疗癌症的方法,但化学药物会对正常细胞产生一定毒性。因此,开发一种更加安全、更加高效的肿瘤诊断治疗纳米平台,将为癌症患者带来福音。其中,光学治疗具备损伤小、危害性低和副反应少等优点,其治疗原理是在特定的光照下,产生单线态氧(~1O2)或产生高温,杀死肿瘤细胞。同时,在二维纳米材料家族中,黑磷(Black phosphoru
镍基高温合金因其优异的高温强度和良好的组织稳定性,在燃气轮机关键热端部件上获得广泛应用。然而,由于燃气轮机燃油中含有微量的S、Cl、Na、K等杂质,燃烧时与空气中的O2反应,并在部件表面沉积一层熔融状态的Na2SO4和Na Cl盐膜,导致高温合金部件表面发生热腐蚀,同时由于长期温度不均,部件需要承受极大的热应力。因此,有必要开展对该部件关键材料Nimonic263和Haynes230合金焊件的抗热
镍基复合氧化物是一种具有高性价比的催化剂材料,在电化学能源领域中被广泛应用于析氧反应和甲醇氧化反应等小分子氧化的阳极催化。本文采用电沉积法制备了一系列高活性和持久性的镍基复合氧化物催化剂,用于提升小分子氧化反应效率。可作为未来金属空气电池和直接甲醇燃料电池中具有潜在用途的阳极催化剂。在众多镍基催化剂中,镍铜复合氧化物表现出优异的析氧催化性能。为了进一步提高NixCu1-x/Cu O/Ni(OH)2
蜂窝结构由于其能量吸收特性良好,比强度与比刚度高,可设计性突出,因此被广泛应用于诸如冲击缓冲和能量吸收结构等工程领域。为了改善常规蜂窝的力学性能,众多研究人员通过多层级设计、梯度密度设计以及仿生设计等方法开发出力学性能优异的蜂窝结构。仿生设计被认为是一种简单有效的策略,可以提高蜂窝材料的力学和吸能性能。然而,传统的制备工艺难以制备具有异型形状的蜂窝材料,比如具有三角晶格的多层级蜂窝、梯度密度的梯度
纳米材料在食品领域的应用十分广泛,从食品包装中掺杂金属纳米粒子到以天然或合成的纳米材料作为载体保护食品营养成分。当前食品基纳米材料的研究现状良好,具有较好的发展前景。鸡蛋是人们日常饮食中最常见也是必不可少的食物来源之一,其丰富的营养价值、较低的食用成本以及十分丰富的来源深受人们信赖。蛋黄中的低密度脂蛋白(LDL)是具有典型“核壳”结构的微纳米材料,其结构与脂质体类似,其具有作为纳米递送材料的潜在应
随着世界各国不断提高的环境保护标准和日益加重的能源危机,推动了绿色环保的新型润滑剂及其添加剂的发展。传统润滑剂因其含有磷、硫和氯等对环境有害元素而面临淘汰。聚乙二醇200(PEG200)润滑剂因其绿色无毒、可降解和低摩擦的特性,成为了传统润滑剂潜在的替代品。而润滑添加剂作为润滑剂中不可或缺的一部分,成为了科研人员的研究重点,碳纳米材料作为其中的佼佼者,也受到了广泛关注。但大量的研究表明,传统碳纳米